Thoulesss energy and correlations of QCD dirac eigenvalues

被引:66
作者
Osborn, JC [1 ]
Verbaarschot, JJM [1 ]
机构
[1] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
关键词
D O I
10.1103/PhysRevLett.81.268
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Eigenvalues and eigenfunctions of the QCD Dirac operator are studied for an instanton liquid partition function. We find that for energy differences delta E below an energy scale E-c, identified as the Thouless energy, the eigenvalue correlations are given by random matrix theory. The value of E-c shows a weak volume dependence for eigenvalues near zero and is consistent with a scaling of E-c similar to 1/L-2 in the bulk of the spectrum in agreement with estimates from chiral perturbation theory that E-c/Delta approximate to (FpiL2)-L-2/pi (with average level spacing Delta). For gamma E > E-c the number variance shows a linear dependence. For the wave functions we find a small nonzero multifractality index. [S0031-9007(98)06623-X].
引用
收藏
页码:268 / 271
页数:4
相关论文
共 42 条
[1]   Universality of random matrices in the microscopic limit and the Dirac operator spectrum [J].
Akemann, G ;
Damgaard, PH ;
Magnea, U ;
Nishigaki, S .
NUCLEAR PHYSICS B, 1997, 487 (03) :721-738
[2]  
AKEMANN G, HEPTH9801133
[3]  
AKEMANN G, HEPTH9802174
[4]   SPECTRAL STATISTICS IN NONDIFFUSIVE REGIMES [J].
ALTLAND, A ;
GEFEN, Y .
PHYSICAL REVIEW LETTERS, 1993, 71 (20) :3339-3342
[5]   What is the Thouless energy for ballistic systems? [J].
Altland, A ;
Gefen, Y ;
Montambaux, G .
PHYSICAL REVIEW LETTERS, 1996, 76 (07) :1130-1133
[6]  
ALTSHULER BL, 1988, ZH EKSP TEOR FIZ+, V94, P343
[7]   SEMICLASSICAL ANALYSIS OF SPECTRAL CORRELATIONS IN MESOSCOPIC SYSTEMS [J].
ARGAMAN, N ;
IMRY, Y ;
SMILANSKY, U .
PHYSICAL REVIEW B, 1993, 47 (08) :4440-4457
[8]   FLUCTUATIONS OF THE NUMBER OF ENERGY-LEVELS AT THE MOBILITY EDGE [J].
ARONOV, AG ;
MIRLIN, AD .
PHYSICAL REVIEW B, 1995, 51 (09) :6131-6134
[9]   Random-matrix theory of quantum transport [J].
Beenakker, CWJ .
REVIEWS OF MODERN PHYSICS, 1997, 69 (03) :731-808
[10]   Microscopic universality in the spectrum of the lattice Dirac operator [J].
Berbenni-Bitsch, ME ;
Meyer, S ;
Schafer, A ;
Verbaarschot, JJM ;
Wettig, T .
PHYSICAL REVIEW LETTERS, 1998, 80 (06) :1146-1149