A central limit theorem for stationary linear processes generated by linearly positively quadrant-dependent process

被引:36
|
作者
Kim, TS [1 ]
Baek, JI [1 ]
机构
[1] WonKwang Univ, Div Math Sci, Chonbuk 570749, South Korea
关键词
central limit theorem; functional central limit theorem; linear process; linearly positive quadrant dependent;
D O I
10.1016/S0167-7152(00)00168-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A central limit theorem is obtained for a stationary linear process of the form X-t= Sigma (infinity)(j=0) a(j) epsilon (t-j), where {epsilon (t)} is a strictly stationary sequence of linearly positive quadrant dependent random variables with E epsilon (t) = 0, E/epsilon (t)/(s) < <infinity> for some s > 2, and Sigma (infinity)(t = n+1) E epsilon (1) epsilon (t) = O(n(-rho)) for some rho > 0 and Sigma (infinity)(J=0) /a(j)/ < <infinity>. (C) 2001 Elsevier Science B.V. All rights reserved. MSC: 60F05; 60G10.
引用
收藏
页码:299 / 305
页数:7
相关论文
empty
未找到相关数据