Traveling Wave Model for Frequency Comb Generation in Single-Section Quantum Well Diode Lasers

被引:16
作者
Dong, Mark [1 ]
Mangan, Niall M. [4 ]
Kutz, J. Nathan [5 ]
Cundiff, Steven T. [2 ,3 ]
Winful, Herbert G.
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Fac, Ann Arbor, MI 48109 USA
[3] Univ Michigan, EECS Dept, Ann Arbor, MI 48109 USA
[4] Univ Washington, Appl Math, Seattle, WA 98195 USA
[5] Univ Washington, Seattle, WA 98195 USA
关键词
Mathematical model; Semiconductor device modeling; Frequency modulation; Laser mode locking; Diode lasers; Quantum dot lasers; Semiconductor diode lasers; quantum well lasers; mode locked lasers; frequency combs; traveling wave simulations; SEMICONDUCTOR-LASERS; LOCKED LASER; DYNAMICS; GAIN; LOCKING;
D O I
10.1109/JQE.2017.2756641
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a traveling wave model for a semiconductor diode laser based on quantum wells. The gain model is carefully derived from first principles and implemented with as few phenomenological constants as possible. The transverse energies of the quantum well confined electrons are discretized to automatically capture the effects of spectral and spatial hole burning, the gain asymmetry, and the linewidth enhancement factor. We apply this model to semiconductor optical amplifiers and single-section phase-locked lasers. We are able to reproduce the experimental results. The calculated frequency modulated comb shows potential to be a compact, chip-scale comb source without additional external components.
引用
收藏
页数:11
相关论文
共 33 条
[1]   QUANTUM-WELL LASERS GAIN, SPECTRA, DYNAMICS [J].
ARAKAWA, Y ;
YARIV, A .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1986, 22 (09) :1887-1899
[2]   Single-section quantum well mode-locked laser for 400 Gb/s SSB-OFDM transmission [J].
Calo, Cosimo ;
Vujicic, Vidak ;
Watts, Regan ;
Browning, Colm ;
Merghem, Kamel ;
Panapakkam, Vivek ;
Lelarge, Francois ;
Martinez, Anthony ;
Benkelfat, Badr-Eddine ;
Ramdane, Abderrahim ;
Barry, Liam P. .
OPTICS EXPRESS, 2015, 23 (20) :26442-26449
[3]  
Chow W. W., 1994, SemiconductorLaser Physics, DOI DOI 10.1007/978-3-642-61225-1
[4]   Nonequilibrium model for semiconductor laser modulation response [J].
Chow, WW ;
Schneider, HC ;
Koch, SW ;
Chang, CH ;
Chrostowski, L ;
Chang-Hasnain, CJ .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (04) :402-409
[5]  
Chuang S. L., 2009, PHYS PHOTONIC DEVICE
[6]   Coherent multiheterodyne spectroscopy using stabilized optical frequency combs [J].
Coddington, Ian ;
Swann, William C. ;
Newbury, Nathan R. .
PHYSICAL REVIEW LETTERS, 2008, 100 (01)
[7]   Colloquium:: Femtosecond optical frequency combs [J].
Cundiff, ST ;
Ye, J .
REVIEWS OF MODERN PHYSICS, 2003, 75 (01) :325-342
[8]  
Cundiff ST, 2010, NAT PHOTONICS, V4, P760, DOI [10.1038/nphoton.2010.196, 10.1038/NPHOTON.2010.196]
[9]   HIGH-POWER ULTRAFAST LASER-DIODES [J].
DELFYETT, PJ ;
FLOREZ, LT ;
STOFFEL, N ;
GMITTER, T ;
ANDREADAKIS, NC ;
SILBERBERG, Y ;
HERITAGE, JP ;
ALPHONSE, GA .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1992, 28 (10) :2203-2219
[10]   An optical clock based on a single trapped 199Hg+ ion [J].
Diddams, SA ;
Udem, T ;
Bergquist, JC ;
Curtis, EA ;
Drullinger, RE ;
Hollberg, L ;
Itano, WM ;
Lee, WD ;
Oates, CW ;
Vogel, KR ;
Wineland, DJ .
SCIENCE, 2001, 293 (5531) :825-828