Dual-Surrogate-Assisted Cooperative Particle Swarm Optimization for Expensive Multimodal Problems

被引:86
作者
Ji, Xinfang [1 ]
Zhang, Yong [1 ]
Gong, Dunwei [1 ]
Sun, Xiaoyan [1 ]
机构
[1] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221008, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimization; Clustering algorithms; Particle swarm optimization; Statistics; Sociology; Prediction algorithms; Sun; Coevolution; expensive optimization; multimodal; particle swarm optimization (PSO); surrogate-assisted; EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION; ALGORITHM; MODEL; CONVERGENCE;
D O I
10.1109/TEVC.2021.3064835
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Various real-world applications can be classified as expensive multimodal optimization problems. When surrogate-assisted evolutionary algorithms (SAEAs) are employed to tackle these problems, they not only face a contradiction between the precision of surrogate models and the cost of individual evaluations but also have the difficulty that surrogate models and problem modalities are hard to match. To address this issue, this article studies a dual-surrogate-assisted cooperative particle swarm optimization algorithm to seek multiple optimal solutions. A dual-population cooperative particle swarm optimizer is first developed to simultaneously explore/exploit multiple modalities. Following that, a modal-guided dual-layer cooperative surrogate model, which contains one upper global surrogate model and a group of lower local surrogate models, is constructed with the purpose of reducing the individual evaluation cost. Moreover, a hybrid strategy based on clustering and peak-valley is proposed to detect new modalities. Compared with five existing SAEAs and seven multimodal evolutionary algorithms, the proposed algorithm can simultaneously obtain multiple highly competitive optimal solutions at a low computational cost according to the experimental results of testing both 11 benchmark instances and the building energy conservation problem.
引用
收藏
页码:794 / 808
页数:15
相关论文
共 56 条
[1]   Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection [J].
Akhtar, Taimoor ;
Shoemaker, Christine A. .
JOURNAL OF GLOBAL OPTIMIZATION, 2016, 64 (01) :17-32
[2]  
Bandaru S, 2013, 2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), P95
[3]   Inducing Niching Behavior in Differential Evolution Through Local Information Sharing [J].
Biswas, Subhodip ;
Kundu, Souvik ;
Das, Swagatam .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2015, 19 (02) :246-263
[4]   An efficient surrogate-assisted particle swarm optimization algorithm for high-dimensional expensive problems [J].
Cai, Xiwen ;
Qiu, Haobo ;
Gao, Liang ;
Jiang, Chen ;
Shao, Xinyu .
KNOWLEDGE-BASED SYSTEMS, 2019, 184
[5]   Distributed Individuals for Multiple Peaks: A Novel Differential Evolution for Multimodal Optimization Problems [J].
Chen, Zong-Gan ;
Zhan, Zhi-Hui ;
Wang, Hua ;
Zhang, Jun .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (04) :708-719
[6]   Evolutionary Multiobjective Optimization-Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection [J].
Cheng, Ran ;
Li, Miqing ;
Li, Ke ;
Yao, Xin .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2018, 22 (05) :692-706
[7]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[8]   Multimodal Optimization Using a Bi-Objective Evolutionary Algorithm [J].
Deb, Kalyanmoy ;
Saha, Amit .
EVOLUTIONARY COMPUTATION, 2012, 20 (01) :27-62
[9]   Surrogate-based optimization with clustering-based space exploration for expensive multimodal problems [J].
Dong, Huachao ;
Song, Baowei ;
Wang, Peng ;
Dong, Zuomin .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 57 (04) :1553-1577
[10]  
Eberhart R., 2002, MHS95 6 INT S MICROM, DOI DOI 10.1109/MHS.1995.494215