On a converse theorem for G2 over finite fields

被引:0
|
作者
Liu, Baiying [1 ]
Zhang, Qing [2 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47906 USA
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro, Daejeon 34141, South Korea
关键词
FOURIER-JACOBI MODELS; REDUCTIVE GROUPS; GAMMA FACTORS; UNIPOTENT SUPPORT; REPRESENTATIONS; CONJECTURE; UNIQUENESS; GL(N);
D O I
10.1007/s00208-021-02250-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove certain multiplicity one theorems and define twisted gamma factors for irreducible generic cuspidal representations of split G(2) over finite fields k of odd characteristic. Then we prove the first converse theorem for exceptional groups, namely, GL(1) and GL(2)-twisted gamma factors will uniquely determine an irreducible generic cuspidal representation of G(2)(k).
引用
收藏
页码:1217 / 1283
页数:67
相关论文
共 50 条
  • [1] Gamma factors and converse theorems for classical groups over finite fields
    Liu, Baiying
    Zhang, Qing
    JOURNAL OF NUMBER THEORY, 2022, 234 : 285 - 332
  • [2] A local converse theorem for U(2,2)
    Zhang, Qing
    FORUM MATHEMATICUM, 2017, 29 (06) : 1471 - 1497
  • [3] A Torelli Theorem for Curves over Finite Fields
    Bogomolov, Fedor
    Korotiaev, Mikhail
    Tschinkel, Yuri
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2010, 6 (01) : 245 - 294
  • [4] A local converse theorem for Sp2r
    Zhang, Qing
    MATHEMATISCHE ANNALEN, 2018, 372 (1-2) : 451 - 488
  • [5] ON THE LOCAL CONVERSE THEOREM FOR SPLIT SO2l
    Hazeltine, Alexander
    Liu, Baiying
    REPRESENTATION THEORY, 2025, 29 : 209 - 255
  • [6] A LOCAL CONVERSE THEOREM FOR U2r+1
    Zhang, Qing
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (08) : 5631 - 5654
  • [7] Multiplet Classification of Reducible Verma Modules over the G2 Algebra
    Dobrev, V. K.
    32ND INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (GROUP32), 2019, 1194
  • [8] Classification of the reducible Verma modules over the Jacobi algebra G2
    Aizawa, N.
    Dobrev, V. K.
    Doi, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (47)
  • [9] On the number of irreducible mod l rank 2 sheaves on curves over finite fields
    Boeckle, Gebhard
    Khare, Chandrashekhar B.
    MATHEMATICAL RESEARCH LETTERS, 2017, 24 (06) : 1605 - 1632
  • [10] Hypergeometric Functions Over Finite Fields
    Fuselier, Jenny
    Long, Ling
    Ramakrishna, Ravi
    Swisher, Holly
    Tu, Fang-Ting
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 280 (1382) : 1 - +