Quantum spectrum for a Kerr-Newman black hole

被引:33
作者
Gour, G [1 ]
Medved, AJM
机构
[1] Univ Alberta, Dept Phys, Edmonton, AB T6G 2J1, Canada
[2] Univ Alberta, Inst Theoret Phys, Edmonton, AB T6G 2J1, Canada
关键词
D O I
10.1088/0264-9381/20/9/305
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we consider the quantum area spectrum for a rotating and charged (Kerr-Newman) black hole. Generalizing a recent study on Kerr black holes (which was inspired by the static black-hole formalism of Barvinsky, Das and Kunstatter), we show that the quantized area operator can be expressed in terms of three quantum numbers (roughly related to the mass, charge and spin sectors). More precisely, we find that A = 8pih [n + 1/2 + p(1)/2 + p(2)], where n, p(1) and p(2) are strictly non-negative integers. In this way, we are able to confirm a uniformly spaced spectrum even for a fully general Kerr-Newman black hole. Along the way, we derive certain selection rules and use these to demonstrate that, in spite of appearances, the charge and spin spectra are not completely independent.
引用
收藏
页码:1661 / 1671
页数:11
相关论文
共 50 条
[11]   From schwarzschild black hole to Kerr-Newman black hole [J].
Liu, WB ;
Li, X .
ACTA PHYSICA SINICA, 1999, 48 (10) :1793-1799
[12]   Area Spectrum of a Kerr-Newman Black Hole Via an Adiabatic Invariant [J].
Xiao-Xiong Zeng ;
Qiang Li .
International Journal of Theoretical Physics, 2014, 53 :4407-4413
[13]   From Schwarzschild black hole to Kerr-Newman black hole [J].
Liu, Wen-Biao ;
Li, Xiang .
Wuli Xuebao/Acta Physica Sinica, 1999, 48 (10) :1798-1799
[14]   Hawking radiation of the Kerr-Newman black hole [J].
Chen, DeYou ;
Yang, ShuZheng .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (12) :3067-3071
[15]   Area Spectrum of a Kerr-Newman Black Hole Via an Adiabatic Invariant [J].
Zeng, Xiao-Xiong ;
Li, Qiang .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (12) :4407-4413
[16]   Rindler approximation to Kerr-Newman black hole [J].
H. A. Camargo ;
M. Socolovsky .
The European Physical Journal Plus, 130
[17]   Statistical entropy of Kerr-Newman black hole [J].
Zhao, Ren ;
Zhang, Li-Chun .
Wuli Xuebao/Acta Physica Sinica, 2002, 51 (06) :1169-1170
[18]   Spinning Particle as Kerr-Newman "Black Hole" [J].
Burinskii, A. .
PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2020, 17 (05) :724-729
[19]   Rindler approximation to Kerr-Newman black hole [J].
Camargo, H. A. ;
Socolovsky, M. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (11) :1-6
[20]   Kerr-Newman black hole as spinning particle [J].
Burinskii, Alexander .
XVIII WORKSHOP ON HIGH ENERGY SPIN PHYSICS, DSPIN-2019, 2020, 1435