Quantum spectrum for a Kerr-Newman black hole

被引:33
|
作者
Gour, G [1 ]
Medved, AJM
机构
[1] Univ Alberta, Dept Phys, Edmonton, AB T6G 2J1, Canada
[2] Univ Alberta, Inst Theoret Phys, Edmonton, AB T6G 2J1, Canada
关键词
D O I
10.1088/0264-9381/20/9/305
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we consider the quantum area spectrum for a rotating and charged (Kerr-Newman) black hole. Generalizing a recent study on Kerr black holes (which was inspired by the static black-hole formalism of Barvinsky, Das and Kunstatter), we show that the quantized area operator can be expressed in terms of three quantum numbers (roughly related to the mass, charge and spin sectors). More precisely, we find that A = 8pih [n + 1/2 + p(1)/2 + p(2)], where n, p(1) and p(2) are strictly non-negative integers. In this way, we are able to confirm a uniformly spaced spectrum even for a fully general Kerr-Newman black hole. Along the way, we derive certain selection rules and use these to demonstrate that, in spite of appearances, the charge and spin spectra are not completely independent.
引用
收藏
页码:1661 / 1671
页数:11
相关论文
共 50 条
  • [11] From schwarzschild black hole to Kerr-Newman black hole
    Liu, WB
    Li, X
    ACTA PHYSICA SINICA, 1999, 48 (10) : 1793 - 1799
  • [12] Area Spectrum of a Kerr-Newman Black Hole Via an Adiabatic Invariant
    Xiao-Xiong Zeng
    Qiang Li
    International Journal of Theoretical Physics, 2014, 53 : 4407 - 4413
  • [13] From Schwarzschild black hole to Kerr-Newman black hole
    Liu, Wen-Biao
    Li, Xiang
    Wuli Xuebao/Acta Physica Sinica, 1999, 48 (10): : 1798 - 1799
  • [14] Hawking radiation of the Kerr-Newman black hole
    Chen, DeYou
    Yang, ShuZheng
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (12) : 3067 - 3071
  • [15] Area Spectrum of a Kerr-Newman Black Hole Via an Adiabatic Invariant
    Zeng, Xiao-Xiong
    Li, Qiang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (12) : 4407 - 4413
  • [16] Statistical entropy of Kerr-Newman black hole
    Zhao, Ren
    Zhang, Li-Chun
    Wuli Xuebao/Acta Physica Sinica, 2002, 51 (06): : 1169 - 1170
  • [17] Rindler approximation to Kerr-Newman black hole
    H. A. Camargo
    M. Socolovsky
    The European Physical Journal Plus, 130
  • [18] Spinning Particle as Kerr-Newman "Black Hole"
    Burinskii, A.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2020, 17 (05) : 724 - 729
  • [19] Rindler approximation to Kerr-Newman black hole
    Camargo, H. A.
    Socolovsky, M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (11): : 1 - 6
  • [20] Kerr-Newman black hole as spinning particle
    Burinskii, Alexander
    XVIII WORKSHOP ON HIGH ENERGY SPIN PHYSICS, DSPIN-2019, 2020, 1435