Glycosaminoglycan-based resorbable polymer composites in tissue refurbishment

被引:18
作者
Gulati, Khushboo [1 ]
Meher, Mukesh Kumar [2 ]
Poluri, Krishna Mohan [1 ,2 ]
机构
[1] Indian Inst Technol Roorkee, Dept Biotechnol, Roorkee 247667, Uttarakhand, India
[2] Indian Inst Technol Roorkee, Ctr Nanotechnol, Roorkee 247667, Uttarakhand, India
关键词
chondroitin sulfate; glycosaminoglycans; heparin; hyaluronan; resorbable matrices; tissue engineering; OVERSULFATED CHONDROITIN SULFATE; ASSEMBLING PEPTIDE HYDROGEL; DIAMETER VASCULAR GRAFTS; NEURAL STEM-CELLS; KERATAN SULFATE; HEPARAN-SULFATE; DERMATAN SULFATE; BIODEGRADABLE POLYMERS; EPSILON-CAPROLACTONE; CARTILAGE REPAIR;
D O I
10.2217/rme-2017-0012
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Regeneration of tissue structure with the aid of bioactive polymer matrices/composites and scaffolds for respective applications is one of the emerging areas of biomedical engineering. Recent advances in conjugated glycosaminoglycan (GAG) hybrids using natural and synthetic polymers have opened new avenues for producing a wide variety of resorbable polymer matrices. These hybrid scaffolds are low-immunogenic, highly biocompatible and biodegradable with incredible mechanical and tensile properties. GAG-based resorbable polymeric matrices are being exploited in migration of stem cells, cartilage and bone replacement/regeneration and production of scaffolds for various tissue engineering applications. In the current review, we will discuss the role of GAG-based resorbable polymer matrices in the field of regenerative medicine.
引用
收藏
页码:431 / 457
页数:27
相关论文
共 248 条
[1]  
Addi C, 2017, TISSUE ENG PART B-RE, V23, P163, DOI [10.1089/ten.teb.2016.0280, 10.1089/ten.TEB.2016.0280]
[2]   Current advances in electrospun gelatin-based scaffolds for tissue engineering applications [J].
Aldana, Ana A. ;
Abraham, Gustavo A. .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2017, 523 (02) :441-453
[3]   Hyaluronan [J].
Almond, A. .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2007, 64 (13) :1591-1596
[4]   Silk-based biomaterials [J].
Altman, GH ;
Diaz, F ;
Jakuba, C ;
Calabro, T ;
Horan, RL ;
Chen, JS ;
Lu, H ;
Richmond, J ;
Kaplan, DL .
BIOMATERIALS, 2003, 24 (03) :401-416
[5]   Nanoporous capsules of block co-polymers of [(MeO-PEG-NH)-b-(L-GluA)]-PCL for the controlled release of anticancer drugs for therapeutic applications [J].
Amgoth, Chander ;
Dharmapuri, Gangappa ;
Kalle, Arunasree M. ;
Paik, Pradip .
NANOTECHNOLOGY, 2016, 27 (12)
[6]   Characterization of esterified hyaluronan-gelatin polymer composites suitable for chondrogenic differentiation of mesenchymal stem cells [J].
Angele, Peter ;
Mueller, Rainer ;
Schumann, Detlef ;
Englert, Carsten ;
Zellner, Johannes ;
Johnstone, Brian ;
Yoo, Jung ;
Hammer, Joachim ;
Fierlbeck, Johann ;
Angele, Martin K. ;
Nerlich, Michael ;
Kujat, Richard .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2009, 91A (02) :416-427
[7]  
[Anonymous], 2009, ESSENTIALS GLYCOBIOL
[8]   Biodegradable polymer matrix nanocomposites for tissue engineering: A review [J].
Armentano, I. ;
Dottori, M. ;
Fortunati, E. ;
Mattioli, S. ;
Kenny, J. M. .
POLYMER DEGRADATION AND STABILITY, 2010, 95 (11) :2126-2146
[9]   CD44 IS THE PRINCIPAL CELL-SURFACE RECEPTOR FOR HYALURONATE [J].
ARUFFO, A ;
STAMENKOVIC, I ;
MELNICK, M ;
UNDERHILL, CB ;
SEED, B .
CELL, 1990, 61 (07) :1303-1313
[10]   CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow [J].
Avigdor, A ;
Goichberg, P ;
Shivtiel, S ;
Dar, A ;
Peled, A ;
Samira, S ;
Kollet, O ;
Hershkoviz, R ;
Alon, R ;
Hardan, I ;
Ben-Hur, H ;
Naor, D ;
Nagler, A ;
Lapidot, T .
BLOOD, 2004, 103 (08) :2981-2989