KERNELS OF MORPHISMS BETWEEN INDECOMPOSABLE INJECTIVE MODULES

被引:14
作者
Facchini, Alberto [1 ]
Ecevit, Sule [2 ]
Kosan, M. Tamer [2 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
[2] Gebze Inst Technol, Dept Math, TR-41400 Gebze, Turkey
关键词
SERIAL MODULES; RINGS;
D O I
10.1017/S0017089510000170
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the endomorphism rings of kernels ker phi of non-injective morphisms phi between indecomposable injective modules are either local or have two maximal ideals, the module ker phi is determined up to isomorphism by two invariants called monogeny class and upper part, and a weak form of the Krull-Schmidt theorem holds for direct sums of these kernels. We prove with an example that our pathological decompositions actually take place. We show that a direct sum of n kernels of morphisms between injective indecomposable modules can have exactly n ! pairwise non-isomorphic direct-sum decompositions into kernels of morphisms of the same type. If E(R) is an injective indecomposable module and S is its endomorphism ring, the duality Hom(-, E(R)) transforms kernels of morphisms E(R) -> E(R) into cyclically presented left modules over the local ring S, sending the monogeny class into the epigeny class and the upper part into the lower part.
引用
收藏
页码:69 / 82
页数:14
相关论文
共 9 条
[1]   Equivalence of diagonal matrices over local rings [J].
Amini, Babak ;
Amini, Afshin ;
Facchini, Alberto .
JOURNAL OF ALGEBRA, 2008, 320 (03) :1288-1310
[2]   DOES CALCIUM SUPPLEMENTATION REDUCE THE RISK OF URINARY OXALATE CALCULI AFTER JEJUNOILEAL BYPASS FOR MORBID-OBESITY [J].
ANDERSEN, T ;
LAWAETZ, H ;
ASTRUP, A ;
MCNAIR, P .
OBESITY SURGERY, 1992, 2 (01) :13-17
[3]  
Bumby R. T., 1965, ARCH MATH, V16, P184
[4]   Krull-Schmidt fails for serial modules [J].
Facchini, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (11) :4561-4575
[5]  
Facchini A., 2013, MODULE THEORY ENDOMO, V167
[6]   Local morphisms and modules with a semilocal endomorphism ring [J].
Facchini, Alberto ;
Herbera, Dolors .
ALGEBRAS AND REPRESENTATION THEORY, 2006, 9 (04) :403-422
[7]  
GILL DT, 1971, J LOND MATH SOC, V4, P140
[8]  
Matlis E., 1958, Pacific Journ. of Math., V8, P511, DOI 10.2140/pjm.1958.8.511
[9]   SERIAL MODULES AND ENDOMORPHISM RINGS [J].
SHORES, TS ;
LEWIS, WJ .
DUKE MATHEMATICAL JOURNAL, 1974, 41 (04) :889-909