Speech Emotion Recognition Using Deep Learning LSTM for Tamil Language

被引:4
|
作者
Fernandes, Bennilo [1 ]
Mannepalli, Kasiprasad [1 ]
机构
[1] Koneru Lakshmaiah Educ Fdn, Dept Elect & Commun Engn, Guntur, Andhra Pradesh, India
来源
关键词
BiLSTM; DNN; Emotional Recognition; LSTM; RNN; CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.47836/pjst.29.3.33
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep Neural Networks (DNN) are more than just neural networks with several hidden units that gives better results with classification algorithm in automated voice recognition activities. Then spatial correlation was considered in traditional feedforward neural networks and which do not manage speech signal properly to it extend, so recurrent neural networks (RNNs) were implemented. Long Short-Term Memory (LSTM) systems is a unique case of RNNs for speech processing, thus considering long-term dependencies Deep Hierarchical LSTM and BiLSTM is designed with dropout layers to reduce the gradient and long-term learning error in emotional speech analysis. Thus, four different combinations of deep hierarchical learning architecture Deep Hierarchical LSTM and LSTM (DHLL), Deep Hierarchical LSTM and BiLSTM (DHLB), Deep Hierarchical BiLSTM and LSTM (DHBL) and Deep Hierarchical dual BiLSTM (DHBB) is designed with dropout layers to improve the networks. The performance test of all four model were compared in this paper and better efficiency of classification is attained with minimal dataset of Tamil Language. The experimental results show that DHLB reaches the best precision of about 84% in recognition of emotions for Tamil database, however, the DHBL gives 83% of efficiency. Other design layers also show equal performance but less than the above models DHLL & DHBB shows 81% of efficiency for lesser dataset and minimal execution and training time.
引用
收藏
页码:1915 / 1936
页数:22
相关论文
共 50 条
  • [31] A Deep Learning Approach for Speech Emotion Recognition Optimization Using Meta-Learning
    Ottoni, Lara Toledo Cordeiro
    Ottoni, Andre Luiz Carvalho
    Cerqueira, Jes de Jesus Fiais
    ELECTRONICS, 2023, 12 (23)
  • [32] Ensemble deep learning with HuBERT for speech emotion recognition
    Yang, Janghoon
    2023 IEEE 17TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING, ICSC, 2023, : 153 - 154
  • [33] SPEECH EMOTION RECOGNITION-A DEEP LEARNING APPROACH
    Asiya, U. A.
    Kiran, V. K.
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 867 - 871
  • [34] Survey of Deep Representation Learning for Speech Emotion Recognition
    Latif, Siddique
    Rana, Rajib
    Khalifa, Sara
    Jurdak, Raja
    Qadir, Junaid
    Schuller, Bjorn
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (02) : 1634 - 1654
  • [35] Evaluating deep learning architectures for Speech Emotion Recognition
    Fayek, Haytham M.
    Lech, Margaret
    Cavedon, Lawrence
    NEURAL NETWORKS, 2017, 92 : 60 - 68
  • [36] Lightweight Deep Learning Framework for Speech Emotion Recognition
    Akinpelu, Samson
    Viriri, Serestina
    Adegun, Adekanmi
    IEEE ACCESS, 2023, 11 : 77086 - 77098
  • [37] Deep Learning Techniques for Speech Emotion Recognition : A Review
    Pandey, Sandeep Kumar
    Shekhawat, H. S.
    Prasanna, S. R. M.
    2019 29TH INTERNATIONAL CONFERENCE RADIOELEKTRONIKA (RADIOELEKTRONIKA), 2019, : 197 - 202
  • [38] Speech Emotion Recognition Using Gammatone Cepstral Coefficients and Deep Learning Features
    Sharan, Roneel, V
    2023 IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLIED NETWORK TECHNOLOGIES, ICMLANT, 2023, : 139 - 142
  • [39] Speech emotion recognition using feature fusion: a hybrid approach to deep learning
    Khan, Waleed Akram
    ul Qudous, Hamad
    Farhan, Asma Ahmad
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (31) : 75557 - 75584
  • [40] Speech Emotion Recognition Using Deep Learning Transfer Models and Explainable Techniques
    Kim, Tae-Wan
    Kwak, Keun-Chang
    APPLIED SCIENCES-BASEL, 2024, 14 (04):