Generalized Burmester points computation by means of Bottema's instantaneous invariants and intrinsic geometry

被引:19
作者
Cera, M. [1 ]
Pennestri, E. [1 ]
机构
[1] Univ Roma Tor Vergata, Dept Enterprise Engn, Via Politecn 1, I-00133 Rome, Italy
关键词
Instantaneous invariants; Generalized Burmester points; Intrinsic geometry; Path generator mechanisms; Kinematics; CURVATURE ANALYSIS; ORDER;
D O I
10.1016/j.mechmachtheory.2018.07.011
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper reports the algebraic derivations of the quintic polynomial equation whose solution gives the coordinates of generalized Burmester points (GBPs). Denoted with lambda(1) and lambda(2) the ratios of the first and second rate of change of curvature to curvature, respectively, the paths traced by GBPs have prescribed values of such ratios. When lambda(1) = lambda(2) = 0, GBPs reduce to the (four) classical Burmester points. Our derivations, based on the properties of Cesaro's intrinsic geometry, led to a concise algebraic form of such polynomial coefficients. This availability allows expanding the field of application of Bottema's instantaneous invariants in higher-order mechanical approximation of any algebraic or parametric curve. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:316 / 335
页数:20
相关论文
共 32 条
[1]   SECONDARY CENTERS OF CURVATURE FOR THE POINT-PATHS OF A PLANAR MOTION [J].
BOTTEMA, O .
MECHANISM AND MACHINE THEORY, 1981, 16 (02) :147-151
[2]  
Bottema O., 1961, PROC INT C TEACHERS, P159
[3]  
Bottema O., 1949, INDAG MATH, VXI, P203
[4]  
Cesaro E., 1896, LEZIONI GEOMETRIA IN
[5]  
Cesaro E., 1901, Vorlesungen Uber Naturliche Geometrie
[6]  
Chaundy T. W., 1934, Q J MATH, V5, P1
[7]  
Di Benedetto A., 1993, INTRO CINEMATICA ME, VII
[8]   Revisiting Burmester theory with complex forms of Bottema's instantaneous invariants [J].
Eren, K. ;
Ersoy, S. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (04) :431-437
[9]   DYNAMIC STATE OF A MOVING PLANE [J].
ESCHENBA.PW ;
TESAR, D .
JOURNAL OF ENGINEERING FOR INDUSTRY-TRANSACTIONS OF THE ASME, 1973, 95 (02) :445-450
[10]   Algebraic Algorithm for the Kinematic Analysis of Slider-Crank/Rocker Mechanisms [J].
Figliolini, Giorgio ;
Conte, Marco ;
Rea, Pierluigi .
JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2012, 4 (01)