Nonlinear time-harmonic Maxwell equations in a bounded domain: Lack of compactness

被引:3
|
作者
Mederski, Jaroslaw [1 ,2 ]
机构
[1] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
[2] Nicolaus Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, Poland
关键词
time-harmonic Maxwell equations; perfect conductor; ground state; variational methods; strongly indefinite functional; Nehari-Pankov manifold; Brezis-Nirenberg problem; critical exponent; GROUND-STATES; POTENTIALS; NONSMOOTH; THEOREMS; SPECTRUM; OPERATOR;
D O I
10.1007/s11425-017-9312-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We survey recent results on ground and bound state solutions E : O. R3 of the problem 8< :. x (. x E) + E = | E | p in O; x E = 0 on @ O on bounded Lipschitz domain O. R3, where. x denotes the curl operator in R3. The equation describes the propagation of the time-harmonic electric field R {E (x) e i!t} in nonlinear isotropic material O with = -"!2 6 0, where nd " stand for the permeabilitynd the linear part of the permittivity of the material. The nonlinear term | E | p with 2 < p 6 2 = 6 comes from the nonlinear polarizationnd the boundary conditionsre those for O surrounded by perfect conductor. The problem has variational structure; however the energy functionalssociated with the problem is strongly indefinitend does not satisfy the Palais-Smale condition. We show the underlying difficulties of the problemnd enlist some open questions.
引用
收藏
页码:1963 / 1970
页数:8
相关论文
共 50 条
  • [21] A nonconforming mixed method for the time-harmonic Maxwell equations
    Douglas, J
    Santos, JE
    Sheen, D
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 792 - 796
  • [22] Discontinuous Galerkin methods for the time-harmonic Maxwell equations
    Houston, P
    Perugia, I
    Schneebeli, A
    Schötzau, D
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 483 - 492
  • [23] THE TIME-HARMONIC MAXWELL EQUATIONS IN A DOUBLY PERIODIC STRUCTURE
    DOBSON, D
    FRIEDMAN, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 166 (02) : 507 - 528
  • [24] CAUCHY PROBLEM FOR THE QUATERNIONIC TIME-HARMONIC MAXWELL EQUATIONS
    Sattorov, E. N.
    Ermamatova, Z. E.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : C129 - C137
  • [25] COMPUTATIONAL HOMOGENIZATION OF TIME-HARMONIC MAXWELL'S EQUATIONS
    Henning, Patrick
    Persson, Anna
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (03): : B581 - B607
  • [26] Heterogeneous time-harmonic Maxwell equations in bidimensional domains
    Rodríguez, AA
    APPLIED MATHEMATICS LETTERS, 2001, 14 (06) : 753 - 758
  • [27] Multiplicative block preconditioner for the time-harmonic Maxwell equations
    Huang, Zhuo-Hong
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (09): : 144 - 152
  • [29] GLOBAL UNIQUENESS FOR AN IBVP FOR THE TIME-HARMONIC MAXWELL EQUATIONS
    Caro, Pedro
    Zhou, Ting
    ANALYSIS & PDE, 2014, 7 (02): : 375 - 405
  • [30] An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations
    Alonso, A
    Valli, A
    MATHEMATICS OF COMPUTATION, 1999, 68 (226) : 607 - 631