Conformal nanocarbon coating of alumina nanocrystals for biosensing and bioimaging

被引:19
作者
Aramesh, Morteza [1 ,2 ,3 ,4 ]
Tran, Phong A. [5 ,6 ]
Ostrikov, Kostya [3 ,5 ,6 ]
Prawer, Steven [4 ]
机构
[1] ETH, Inst Biomed Engn, Lab Biosensors & Bioelect, CH-8092 Zurich, Switzerland
[2] QUT, Brisbane, Qld 4000, Australia
[3] CSIRO QUT Joint Sustainable Proc & Devices Lab, Lindfield, NSW 2070, Australia
[4] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia
[5] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Sch Phys Chem & Mech Engn, Brisbane, Qld 4000, Australia
[6] Queensland Univ Technol, Inst Future Environm, Brisbane, Qld 4000, Australia
关键词
Nanocarbon; Nanoparticles; Plasma growth; Structural properties; Biosensing and bioimaging; CARBON NANOTUBES; DRUG-DELIVERY; PLATFORM; DESIGNS; DNA;
D O I
10.1016/j.carbon.2017.06.101
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A conformal coating technique with nanocarbon was developed to enhance the surface properties of alumina nanoparticles for bio-applications. The ultra-thin carbon layer induces new surface properties such as water dispersion, cytocompatibility and tuneable surface chemistry, while maintaining the optical properties of the core particle. The possibility of using these particles as agents for DNA sensing was demonstrated in a competitive assay. Additionally, the inherent fluorescence of the core alumina particles provided a unique platform for localization and monitoring of living organisms, allowing simultaneous cell monitoring and intra-cellular sensing. Nanoparticles were able to carry genes to the cells and release them in an environment where specific biomarkers were present. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:422 / 427
页数:6
相关论文
共 16 条
[1]   Surface charge effects in protein adsorption on nanodiamonds [J].
Aramesh, M. ;
Shimoni, O. ;
Ostrikov, K. ;
Prawer, S. ;
Cervenka, J. .
NANOSCALE, 2015, 7 (13) :5726-5736
[2]   Multifunctional three-dimensional nanodiamond-nanoporous alumina nanoarchitectures [J].
Aramesh, Morteza ;
Fox, Kate ;
Lau, Desmond W. M. ;
Fang, Jinghua ;
Ostrikov, Kostya ;
Prawer, Steven ;
Cervenka, Jiri .
CARBON, 2014, 75 :452-464
[3]  
Baranov M., 2015, SAR FALL M INT SOC O
[4]   Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors [J].
Chen, RJ ;
Bangsaruntip, S ;
Drouvalakis, KA ;
Kam, NWS ;
Shim, M ;
Li, YM ;
Kim, W ;
Utz, PJ ;
Dai, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :4984-4989
[5]   DNA probes using fluorescence resonance energy transfer (FRET): Designs and applications [J].
Didenko, VV .
BIOTECHNIQUES, 2001, 31 (05) :1106-+
[6]   Charge-Convertible Carbon Dots for Imaging Guided Drug Delivery with Enhanced in Vivo Cancer Therapeutic Efficiency [J].
Feng, Tao ;
Ai, Xiangzhao ;
An, Guanghui ;
Yang, Piaoping ;
Zhao, Yanli .
ACS NANO, 2016, 10 (04) :4410-4420
[7]   A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis [J].
He, Shijiang ;
Song, Bo ;
Li, Di ;
Zhu, Changfeng ;
Qi, Wenpeng ;
Wen, Yanqin ;
Wang, Lihua ;
Song, Shiping ;
Fang, Haiping ;
Fan, Chunhai .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (03) :453-459
[8]   Synergistic nanomedicine by combined gene and photothermal therapy [J].
Kim, Jinhwan ;
Kim, Jihoon ;
Jeong, Cherlhyun ;
Kim, Won Jong .
ADVANCED DRUG DELIVERY REVIEWS, 2016, 98 :99-112
[9]   Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform [J].
Li, Hailong ;
Zhang, Yingwei ;
Wang, Lei ;
Tian, Jingqi ;
Sun, Xuping .
CHEMICAL COMMUNICATIONS, 2011, 47 (03) :961-963
[10]   Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material [J].
Liu, Wu-Jun ;
Jiang, Hong ;
Yu, Han-Qing .
CHEMICAL REVIEWS, 2015, 115 (22) :12251-12285