Towards Consistent Visual-Inertial Navigation

被引:0
作者
Huang, Guoquan [1 ]
Kaess, Michael [2 ]
Leonard, John J. [1 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA
来源
2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) | 2014年
关键词
OBSERVABILITY ANALYSIS; KALMAN FILTER; VISION; FUSION; LOCALIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual-inertial navigation systems (VINS) have prevailed in various applications, in part because of the complementary sensing capabilities and decreasing costs as well as sizes. While many of the current VINS algorithms undergo inconsistent estimation, in this paper we introduce a new extended Kalman filter (EKF)-based approach towards consistent estimates. To this end, we impose both state-transition and obervability constraints in computing EKF Jacobians so that the resulting linearized system can best approximate the underlying nonlinear system. Specifically, we enforce the propagation Jacobian to obey the semigroup property, thus being an appropriate state-transition matrix. This is achieved by parametrizing the orientation error state in the global, instead of local, frame of reference, and then evaluating the Jacobian at the propagated, instead of the updated, state estimates. Moreover, the EKF linearized system ensures correct observability by projecting the most-accurate measurement Jacobian onto the observable subspace so that no spurious information is gained. The proposed algorithm is validated by both Monte-Carlo simulation and real-world experimental tests.
引用
收藏
页码:4926 / 4933
页数:8
相关论文
共 50 条
[1]   Visual-Inertial Navigation: A Concise Review [J].
Huang, Guoquan .
2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, :9572-9582
[2]   Decoupled Right Invariant Error States for Consistent Visual-Inertial Navigation [J].
Yang, Yulin ;
Chen, Chuchu ;
Lee, Woosik ;
Huang, Guoquan .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) :1627-1634
[3]   Optimal-State-Constraint EKF for Visual-Inertial Navigation [J].
Huang, Guoquan ;
Eckenhoff, Kevin ;
Leonard, John .
ROBOTICS RESEARCH, VOL 1, 2018, 2 :125-139
[4]   Consistent EKF-Based Visual-Inertial Navigation Using Points and Lines [J].
Heo, Sejong ;
Jung, Jae Hyung ;
Park, Chan Gook .
IEEE SENSORS JOURNAL, 2018, 18 (18) :7638-7649
[5]   Attention and Anticipation in Fast Visual-Inertial Navigation [J].
Carlone, Luca ;
Karaman, Sertac .
IEEE TRANSACTIONS ON ROBOTICS, 2019, 35 (01) :1-20
[6]   Robust Multispectral Visual-Inertial Navigation With Visual Odometry Failure Recovery [J].
Beauvisage, Axel ;
Ahiska, Kenan ;
Aouf, Nabil .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) :9089-9101
[7]   High-precision, consistent EKF-based visual-inertial odometry [J].
Li, Mingyang ;
Mourikis, Anastasios I. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (06) :690-711
[8]   Monocular Visual-Inertial Navigation for Dynamic Environment [J].
Fu, Dong ;
Xia, Hao ;
Qiao, Yanyou .
REMOTE SENSING, 2021, 13 (09)
[9]   Robocentric visual-inertial odometry [J].
Huai, Zheng ;
Huang, Guoquan .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2022, 41 (07) :667-689
[10]   A Consistent Parallel Estimation Framework for Visual-Inertial SLAM [J].
Huai, Zheng ;
Huang, Guoquan .
IEEE TRANSACTIONS ON ROBOTICS, 2024, 40 :3734-3755