Label-free, real-time on-chip sensing of living cells via grating-coupled surface plasmon resonance

被引:25
作者
Borile, Giulia [1 ,2 ]
Rossi, Stefano [1 ,2 ]
Filippi, Andrea [1 ,2 ,3 ]
Gazzola, Enrico [2 ]
Capaldo, Pietro [2 ,4 ]
Tregnago, Claudia [5 ]
Pigazzi, Martina [1 ,5 ]
Romanato, Filippo [1 ,2 ,4 ,6 ]
机构
[1] Fdn Inst Pediat Res Citta Speranza, Corso Stati Uniti 4, I-35127 Padua, Italy
[2] Univ Padua, Dept Phys & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy
[3] Fdn Bruno Kessler, Via Sommar 18, I-38123 Trento, Italy
[4] CNR, INFM, TASC IOM Natl Lab, Area Sci Pk SS,14 Km 163-5, I-34012 Trieste, Italy
[5] Univ Padua, Haematol Oncol Clin & Lab, Women & Child Hlth Dept, Via Giustiniani 3, I-35128 Padua, Italy
[6] Lab Nanofabricat Nanodevices, Corso Stati Uniti 4, I-35127 Padua, Italy
关键词
Surface plasmon resonance; Grating; Nanostructure; Live cells; ADHESION;
D O I
10.1016/j.bpc.2019.106262
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The application of nanotechnologies to address biomedical questions is a key strategy for innovation in biomedical research. Among others, a key point consists in the availability of nanotechnologies for monitoring cellular processes in a real-time and label-free approach. Here, we focused on a grating-coupled Surface Plasmon Resonance (GC-SPR) sensor exploiting phase interrogation. This sensor can be integrated in a microfluidic chamber that ensures cell viability and avoids cell stress. We report the calibration of the sensor response as a function of cell number and its application to monitor cell adhesion kinetics as well as cell response to an external stimulus. Our results show that GC-SPR sensors can offer a valuable alternative to prism-coupled or imaging SPR devices, amenable for microfluidic implementation.
引用
收藏
页数:6
相关论文
共 27 条
[1]   Surface plasmon-polariton length scales: a route to sub-wavelength optics [J].
Barnes, WL .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2006, 8 (04) :S87-S93
[2]   Dependence of Acute Myeloid Leukemia on Adhesion within the Bone Marrow Microenvironment [J].
Becker, Pamela S. .
SCIENTIFIC WORLD JOURNAL, 2012,
[3]  
Borella G., 2019, 3 ESH SCI WORKSH HAE
[4]   The Kinetics of Cell Adhesion to Solid Scaffolds: An Experimental and Theoretical Approach [J].
Doaga, I. O. ;
Savopol, T. ;
Neagu, M. ;
Neagu, A. ;
Kovacs, E. .
JOURNAL OF BIOLOGICAL PHYSICS, 2008, 34 (05) :495-509
[5]   Real-time Detection of Breast Cancer Cells Using Peptide-functionalized Microcantilever Arrays [J].
Etayash, Hashem ;
Jiang, Keren ;
Azmi, Sarfuddin ;
Thundat, Thomas ;
Kaur, Kamaljit .
SCIENTIFIC REPORTS, 2015, 5
[6]   Nanoplasmonic sensors for detecting circulating cancer biomarkers [J].
Ferhan, Abdul Rahim ;
Jackman, Joshua A. ;
Park, Jae Hyeon ;
Cho, Nam-Joon ;
Kim, Dong-Hwan .
ADVANCED DRUG DELIVERY REVIEWS, 2018, 125 :48-77
[7]   Multimodal label-free ex vivo imaging using a dual-wavelength microscope with axial chromatic aberration compensation [J].
Filippi, Andrea ;
Dal Sasso, Eleonora ;
Iop, Laura ;
Armani, Andrea ;
Gintoli, Michele ;
Sandri, Marco ;
Gerosa, Gino ;
Romanato, Filippo ;
Borile, Giulia .
JOURNAL OF BIOMEDICAL OPTICS, 2018, 23 (09)
[8]  
Gazzola E., 2016, Optofluidics, Microfluidics and Nanofluidics, V3, P13, DOI 10.1515/optof-2016-0002
[9]  
GRUSZKA AM, 2019, CELLS-BASEL, V8, DOI DOI 10.3390/CELLS8010066
[10]   Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications [J].
Hoang Hiep Nguyen ;
Park, Jeho ;
Kang, Sebyung ;
Kim, Moonil .
SENSORS, 2015, 15 (05) :10481-10510