Anthocyanin Accumulation and Expression of Anthocyanin Biosynthetic Genes in Radish (Raphanus sativus)

被引:77
|
作者
Park, Nam Il [2 ]
Xu, HuiY [2 ]
Li, Xiaohua [2 ]
Jang, In Hyuk [1 ]
Park, Suhyoung [5 ]
Ahn, Gil Hwan [3 ]
Lim, Yong Pyo [4 ]
Kim, Sun Ju [1 ]
Park, Sang Un [2 ]
机构
[1] Chungnam Natl Univ, Coll Agr & Life Sci, Dept Bio Environm Chem, 79 Daehangno, Taejon 305764, South Korea
[2] Chungnam Natl Univ, Coll Agr & Life Sci, Dept Crop Sci, Taejon 305764, South Korea
[3] Chungnam Natl Univ, Coll Agr & Life Sci, Dept Food Sci & Technol, Taejon 305764, South Korea
[4] Chungnam Natl Univ, Coll Agr & Life Sci, Dept Hort Sci, Taejon 305764, South Korea
[5] RDA, NIHHS, Vegetable Res Div, Suwon 440706, South Korea
关键词
Anthocyanin; radish; Raphanus sativus; gene expression; HPLC-ESI-MS/MS; phenolic compound; FLAVONOID BIOSYNTHESIS; RED RADISH; ACYLATED ANTHOCYANINS; CHOCOLATE CONSUMPTION; COLORFUL MODEL; UNITED-STATES; COMMON FOODS; BIOCHEMISTRY; GENETICS; ELECTROSPRAY;
D O I
10.1021/jf200824c
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Radish [Raphanus sativus (Rs)] is an important dietary vegetable in Asian countries, especially China, Japan, and Korea. To elucidate the molecular mechanisms of anthocyanin accumulation in radish, the gene expression of enzymes directly involved in anthocyanin biosynthesis was analyzed. These genes include phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol reductase (DFR), and anthocyanidin synthase (ANS). RsDFR and RsANS were found to accumulate in the flesh or skin of two radish cultivars (Man Tang Hong and Hong Feng No.1). Radish skin contained higher CHS, CHI, and F3H transcript levels than radish flesh in all three cultivars. In the red radish, 16 anthocyanins were separated and identified by high-performance liquid chromatography (HPLC) and elctrospray ionization-tandem mass spectrometry (ESI-MS/MS). Some of them were acylated with coumaroyl, malonoyl, feruoyl, and caffeoyl moieties. Furthermore (-)-epicatechin and ferulic acid were also identified in the three cultivars.
引用
收藏
页码:6034 / 6039
页数:6
相关论文
empty
未找到相关数据