β-Cyclodextrin-modified hybrid magnetic nanoparticles for catalysis and adsorption

被引:130
作者
Kang, Yan [1 ]
Zhou, Lilin [1 ]
Li, Xia [2 ]
Yuan, Jinying [1 ]
机构
[1] Tsinghua Univ, Key Lab Organ Optoelect & Mol Engn, Dept Chem, Beijing 100084, Peoples R China
[2] Sichuan Univ, Coll Polymer Sci & Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
CORE/SHELL NANOPARTICLES; HIGH-PERFORMANCE; MICROSPHERES; WATER; FUNCTIONALIZATION; IMMOBILIZATION; FLUORESCENCE; SEPARATION; REMOVAL; SHELL;
D O I
10.1039/c0jm03513k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
beta-Cyclodextrin-modified hybrid magnetic nanoparticles (Fe3O4@SiO2-PGMACD) were synthesized via the combination of atom transfer radical polymerization on the surfaces of silica coated iron oxide particles (Fe3O4@SiO2) and ring-opening reaction of epoxy groups. The feasibility of using Fe3O4@SiO2-PGMACD as separable immobilized catalyst and adsorbent was demonstrated. It was found: (1) the prepared Fe3O4@SiO2-PGMACD could be used as catalyst in substrate-selective oxidation of alcohols system and the catalytic efficiency was close to pure beta-Cyclodextrin of equal quantity; (2) the resulting particles appeared remarkably dominant adsorption capacity compared with poly(glycidyl methacrylate) grafted magnetic nanoparticles (Fe3O4@SiO2-PGMA) in the removal of bisphenol A from aqueous solutions. The results suggest that the novel fabricated nanoparticles could serve as bifunctional materials in catalysis or adsorption and subsequently become potential multifunctional materials.
引用
收藏
页码:3704 / 3710
页数:7
相关论文
共 49 条
[1]   Magnetic nanoparticles grafted with cyclodextrin for hydrophobic drug delivery [J].
Banerjee, Shashwat S. ;
Chen, Dong-Hwang .
CHEMISTRY OF MATERIALS, 2007, 19 (25) :6345-6349
[2]   Bifunctional Au-Fe3O4 nanopartides for protein separation [J].
Bao, Jie ;
Chen, Wei ;
Liu, Taotao ;
Zhu, Yulin ;
Jin, Peiyuan ;
Wang, Leyu ;
Liu, Junfeng ;
Wei, Yongge ;
Li, Yadong .
ACS NANO, 2007, 1 (04) :293-298
[3]   Adsorption and separation of water-soluble aromatic molecules by cyclodextrin-functionalized mesoporous silica [J].
Bibby, A ;
Mercier, L .
GREEN CHEMISTRY, 2003, 5 (01) :15-19
[4]   Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG-functionalized porous silica shell [J].
Chen, Feng-Hua ;
Zhang, Li-Ming ;
Chen, Qing-Tao ;
Zhang, Yi ;
Zhang, Zhi-Jun .
CHEMICAL COMMUNICATIONS, 2010, 46 (45) :8633-8635
[5]   Cyclodextrin-based bioactive supramolecular assemblies [J].
Chen, Yong ;
Liu, Yu .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (02) :495-505
[6]   The stability of cyclodextrin complexes in solution [J].
Connors, KA .
CHEMICAL REVIEWS, 1997, 97 (05) :1325-1357
[7]   Magnetically-responsive self assembled composites [J].
Dai, Qiu ;
Nelson, Alshakim .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (11) :4057-4066
[8]   Preparation, characterization, and application of multistimuli-responsive microspheres with fluorescence-labeled magnetic cores and thermoresponsive shells [J].
Deng, YH ;
Wang, CC ;
Shen, XZ ;
Yang, WL ;
An, L ;
Gao, H ;
Fu, SK .
CHEMISTRY-A EUROPEAN JOURNAL, 2005, 11 (20) :6006-6013
[9]   Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins [J].
Deng, Yonghui ;
Qi, Dawei ;
Deng, Chunhui ;
Zhang, Xiangmin ;
Zhao, Dongyuan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (01) :28-+
[10]   Synthesis of Core/Shell Colloidal Magnetic Zeolite Microspheres for the Immobilization of Trypsin [J].
Deng, Yonghui ;
Deng, Chunhui ;
Qi, Dawei ;
Liu, Chong ;
Liu, Jia ;
Zhang, Xiangmin ;
Zhao, Dongyuan .
ADVANCED MATERIALS, 2009, 21 (13) :1377-1382