A SIMPLIFICATION OF THE STEWART EQUATION TO DETERMINE ACID-BASE STATUS IN EXERCISE

被引:0
作者
Peinado, A. B. [1 ]
Diaz, V [1 ,2 ,3 ]
Benito, P. J. [1 ]
Alvarez, M. [2 ,3 ]
Calderon, F. J. [1 ]
机构
[1] Univ Politecn Madrid, Fac Ciencias Actividad Fis & Deporte INEF, E-28040 Madrid, Spain
[2] Univ Zurich, Inst Fisiol Vet, CH-8006 Zurich, Switzerland
[3] Univ Zurich, Zurich Ctr Integrat Human Physiol ZIHP, CH-8006 Zurich, Switzerland
来源
REVISTA INTERNACIONAL DE MEDICINA Y CIENCIAS DE LA ACTIVIDAD FISICA Y DEL DEPORTE | 2011年 / 11卷 / 41期
关键词
acid-base equilibrium; constant load; hydrogen ion; lactate; strong ions; VENTILATORY THRESHOLD; MAXIMAL EXERCISE; SKELETAL-MUSCLE; LATE-GESTATION; GAS-EXCHANGE; VENOUS-BLOOD; BALANCE; PLASMA; EQUILIBRIA; CHEMISTRY;
D O I
暂无
中图分类号
G8 [体育];
学科分类号
04 ; 0403 ;
摘要
The aim of the present study was to simplify the Stewart equation and to test the validity of the proposed form. Twenty-four men performed a constant load exercise test for 30 min on a treadmill. Capillary blood samples were taken at rest, and again 10, 20 and 30 min into the test. Acid-base variables were measured using a blood-gas analyser and lactate levels were measured enzymatically. The [H(+)] was calculated using the Stewart equation: A[H(+)](4)+B[H(+)](3)+C[H(+)](2)+D[H(+)]+ E=0, and using a proposed, simplified version of this equation: A[H(+)](2)+B[H(+)]+C=0. The difference in the mean [H(+)] results obtained with the two equations was 0.004 nmol.L(-1). However, the difference between the means of the equation-derived results and the measured values was highly significant at > 8 nmol.L(-1) (p < 0.001). The proposed equation can be used to estimate [H(+)] instead of the full Stewart equation, although the values obtained are significantly different to those actually measured.
引用
收藏
页码:115 / 126
页数:12
相关论文
共 50 条
[41]   Changes in acid-base and ion balance during exercise in normoxia and normobaric hypoxia [J].
Luehker, Olaf ;
Berger, Marc Moritz ;
Pohlmann, Alexander ;
Hotz, Lorenz ;
Gruhlke, Tilmann ;
Hochreiter, Marcel .
EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2017, 117 (11) :2251-2261
[42]   Arterio-venous differences of blood acid-base status and plasma sodium caused by intense bicycling [J].
Medbo, JI ;
Hanem, S ;
Noddeland, H ;
Jebens, E .
ACTA PHYSIOLOGICA SCANDINAVICA, 2000, 168 (02) :311-326
[43]   Acid-base status and blood gas tensions of neonatal buffalo calves under normal and forced calving [J].
Singh, A. K. ;
Prabhakar, S. ;
Brar, P. S. ;
Uppal, S. K. ;
Singh, Prahlad ;
Gandotra, V. K. .
INDIAN JOURNAL OF ANIMAL SCIENCES, 2011, 81 (12) :1215-1218
[44]   Effect of Lactate Minimum Speed-Guided Training on the Fluid, Electrolyte and Acid-Base Status of Horses [J].
Titotto, Angelica C. ;
Santos, Maira M. ;
Ramos, Gabriel V. ;
Adao, Milena dos S. ;
Benvenuto, Guilherme V. ;
De Lacerda, Luciana C. C. ;
Lisboa, Julio A. N. ;
Lacerda-Neto, Jose C. .
ANIMALS, 2023, 13 (20)
[45]   Influence of pre-exercise acidosis and alkalosis on the kinetics of acid-base recovery following intense exercise [J].
Robergs, R ;
Hutchinson, K ;
Hendee, S ;
Madden, S ;
Siegler, J .
INTERNATIONAL JOURNAL OF SPORT NUTRITION AND EXERCISE METABOLISM, 2005, 15 (01) :59-74
[46]   MODELING OF ACID-BASE EQUILIBRIA [J].
JABOR, A ;
KAZDA, A .
ACTA ANAESTHESIOLOGICA SCANDINAVICA, 1995, 39 :119-122
[47]   Interpretation of acid-base disorders [J].
Hochrainer, Mathis ;
Funk, Georg-Christian .
MEDIZINISCHE KLINIK-INTENSIVMEDIZIN UND NOTFALLMEDIZIN, 2019, 114 (08) :765-776
[48]   Acid-base homeostasis in the neonate [J].
Michalopulos, Michael G. ;
Quigley, Raymond .
PEDIATRICS AND NEONATOLOGY, 2025, 66 :S8-S12
[49]   Toxicologic Acid-Base Disorders [J].
Wiener, Sage W. .
EMERGENCY MEDICINE CLINICS OF NORTH AMERICA, 2014, 32 (01) :149-+
[50]   Physicochemical Models of Acid-Base [J].
Wolf, Matthew B. .
SEMINARS IN NEPHROLOGY, 2019, 39 (04) :328-339