An Artificial Intelligence-based Support Tool for Automation and Standardisation of Gleason Grading in Prostate Biopsies

被引:19
|
作者
Marginean, Felicia [1 ,2 ]
Arvidsson, Ida [3 ]
Simoulis, Athanasios [2 ]
Overgaard, Niels Christian [3 ]
Astrom, Kalle [3 ]
Heyden, Anders [3 ]
Bjartell, Anders [1 ]
Krzyzanowska, Agnieszka [1 ]
机构
[1] Lund Univ, Dept Translat Med, Div Urol Canc, Jan Waldenstroms Gata 5,Plan 2, S-20502 Malmo, Sweden
[2] Skane Univ Hosp, Dept Pathol, Malmo, Sweden
[3] Lund Univ, Ctr Math Sci, Lund, Sweden
来源
EUROPEAN UROLOGY FOCUS | 2021年 / 7卷 / 05期
关键词
Convolutional neural network; Machine learning; Deep learning; Prostate cancer; CANCER; CARCINOMA; IMAGES;
D O I
10.1016/j.euf.2020.11.001
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background: Gleason grading is the standard diagnostic method for prostate cancer and is essential for determining prognosis and treatment. The dearth of expert pathologists, the inter-and intraobserver variability, as well as the labour intensity of Gleason grading all necessitate the development of a user-friendly tool for robust standardisation. Objective: To develop an artificial intelligence (AI) algorithm, based on machine learning and convolutional neural networks, as a tool for improved standardisation in Gleason grading in prostate cancer biopsies. Design, setting, and participants: A total of 698 prostate biopsy sections from 174 patients were used for training. The training sections were annotated by two senior consultant pathologists. The final algorithm was tested on 37 biopsy sections from 21 patients, with digitised slide images from two different scanners. Outcome measurements and statistical analysis: Correlation, sensitivity, and specificity parameters were calculated. Results and limitations: The algorithm shows high accuracy in detecting cancer areas (sensitivity: 100%, specificity: 68%). Compared with the pathologists, the algorithm also performed well in detecting cancer areas (intraclass correlation coefficient [ICC]: 0.99) and assigning the Gleason patterns correctly: Gleason patterns 3 and 4 (ICC: 0.96 and 0.94, respectively), and to a lesser extent, Gleason pattern 5 (ICC: 0.82). Similar results were obtained using two different scanners. Conclusions: Our AI-based algorithm can reliably detect prostate cancer and quantify the Gleason patterns in core needle biopsies, with similar accuracy as pathologists. The results are reproducible on images from different scanners with a proven low level of intraobserver variability. We believe that this AI tool could be regarded as an efficient and interactive tool for pathologists. Patient summary: We developed a sensitive artificial intelligence tool for prostate biopsies, which detects and grades cancer with similar accuracy to pathologists. This tool holds promise to improve the diagnosis of prostate cancer. (c) 2020 European Association of Urology. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).
引用
收藏
页码:995 / 1001
页数:7
相关论文
共 50 条
  • [1] Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists
    Bulten, Wouter
    Balkenhol, Maschenka
    Belinga, Jean-Joel Awoumou
    Brilhante, Americo
    Cakir, Asli
    Egevad, Lars
    Eklund, Martin
    Farre, Xavier
    Geronatsiou, Katerina
    Molinie, Vincent
    Pereira, Guilherme
    Roy, Paromita
    Saile, Gunter
    Salles, Paulo
    Schaafsma, Ewout
    Tschui, Joelle
    Vos, Anne-Marie
    van Boven, Hester
    Vink, Robert
    van der Laak, Jeroen
    Hulsbergen-van der Kaa, Christina
    Litjens, Geert
    MODERN PATHOLOGY, 2021, 34 (03) : 660 - 671
  • [2] Predicting prostate cancer specific-mortality with artificial intelligence-based Gleason grading
    Wulczyn, Ellery
    Nagpal, Kunal
    Symonds, Matthew
    Moran, Melissa
    Plass, Markus
    Reihs, Robert
    Nader, Farah
    Tan, Fraser
    Cai, Yuannan
    Brown, Trissia
    Flament-Auvigne, Isabelle
    Amin, Mahul B.
    Stumpe, Martin C.
    Muller, Heimo
    Regitnig, Peter
    Holzinger, Andreas
    Corrado, Greg S.
    Peng, Lily H.
    Chen, Po-Hsuan Cameron
    Steiner, David F.
    Zatloukal, Kurt
    Liu, Yun
    Mermel, Craig H.
    COMMUNICATIONS MEDICINE, 2021, 1 (01):
  • [3] Evaluation of Artificial Intelligence-Based Gleason Grading Algorithms "in the Wild"
    Faryna, Khrystyna
    Tessier, Leslie
    Retamero, Juan
    Bonthu, Saikiran
    Samanta, Pranab
    Singhal, Nitin
    Kammerer-Jacquet, Solene-Florence
    Radulescu, Camelia
    Agosti, Vittorio
    Collin, Alexandre
    Farre, Xavier
    Fontugne, Jacqueline
    Grobholz, Rainer
    Hoogland, Agnes Marije
    Leite, Katia Ramos Moreira
    Oktay, Murat
    Polonia, Antonio
    Roy, Paromita
    Guilherme, Paulo
    van der Kwast, Theodorus H.
    van Ipenburg, Jolique
    van der Laak, Jeroen
    Litjens, Geert
    MODERN PATHOLOGY, 2024, 37 (11)
  • [4] Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer in Biopsies-Current Status and Next Steps
    Kartasalo, Kimmo
    Bulten, Wouter
    Delahunt, Brett
    Chen, Po-Hsuan Cameron
    Pinckaers, Hans
    Olsson, Henrik
    Ji, Xiaoyi
    Mulliqi, Nita
    Samaratunga, Hemamali
    Tsuzuki, Toyonori
    Lindberg, Johan
    Rantalainen, Mattias
    Wahlby, Carolina
    Litjens, Geert
    Ruusuvuori, Pekka
    Egevad, Lars
    Eklund, Martin
    EUROPEAN UROLOGY FOCUS, 2021, 7 (04): : 687 - 691
  • [5] Artificial intelligence-based fusion prostate biopsy
    Poth, Sandor
    Turoczi-Kirizs, Robert
    Kovacs, Agnes
    Bajory, Zoltan
    ORVOSI HETILAP, 2025, 166 (13) : 503 - 510
  • [6] A deep learning network for Gleason grading of prostate biopsies using EfficientNet
    Ramamurthy, Karthik
    Varikuti, Abinash Reddy
    Gupta, Bhavya
    Aswani, Nehal
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2023, 68 (02): : 187 - 198
  • [7] Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge
    Bulten, Wouter
    Kartasalo, Kimmo
    Chen, Po-Hsuan Cameron
    Strom, Peter
    Pinckaers, Hans
    Nagpal, Kunal
    Cai, Yuannan
    Steiner, David F.
    van Boven, Hester
    Vink, Robert
    Hulsbergen-van de Kaa, Christina
    van der Laak, Jeroen
    Amin, Mahul B.
    Evans, Andrew J.
    van der Kwast, Theodorus
    Allan, Robert
    Humphrey, Peter A.
    Gronberg, Henrik
    Samaratunga, Hemamali
    Delahunt, Brett
    Tsuzuki, Toyonori
    Hakkinen, Tomi
    Egevad, Lars
    Demkin, Maggie
    Dane, Sohier
    Tan, Fraser
    Valkonen, Masi
    Corrado, Greg S.
    Peng, Lily
    Mermel, Craig H.
    Ruusuvuori, Pekka
    Litjens, Geert
    Eklund, Martin
    NATURE MEDICINE, 2022, 28 (01) : 154 - +
  • [8] Development and validation of an explainable artificial intelligence-based decision-supporting tool for prostate biopsy
    Suh, Jungyo
    Yoo, Sangjun
    Park, Juhyun
    Cho, Sung Yong
    Cho, Min Chul
    Son, Hwancheol
    Jeong, Hyeon
    BJU INTERNATIONAL, 2020, 126 (06) : 694 - 703
  • [9] Clinical Utility of Quantitative Gleason Grading in Prostate Biopsies and Prostatectomy Specimens
    Sauter, Guido
    Steurer, Stefan
    Clauditz, Till Sebastian
    Krech, Till
    Wittmer, Corinna
    Lutz, Florian
    Lennartz, Maximilian
    Janssen, Tim
    Hakimi, Nayira
    Simon, Ronald
    von Petersdorff-Campen, Mareike
    Jacobsen, Frank
    von Loga, Katharina
    Wilczak, Waldemar
    Minner, Sarah
    Tsourlakis, Maria Christina
    Chirico, Viktoria
    Haese, Alexander
    Heinzer, Hans
    Beyer, Burkhard
    Graefen, Markus
    Michl, Uwe
    Salomon, Georg
    Steuber, Thomas
    Budaeus, Lars Henrik
    Hekeler, Elena
    Malsy-Mink, Julia
    Kutzera, Sven
    Fraune, Christoph
    Goebel, Cosima
    Huland, Hartwig
    Schlomm, Thorsten
    EUROPEAN UROLOGY, 2016, 69 (04) : 592 - 598
  • [10] Integrating Tertiary Gleason 5 Patterns into Quantitative Gleason Grading in Prostate Biopsies and Prostatectomy Specimens
    Sauter, Guido
    Clauditz, Till
    Steurer, Stefan
    Wittmer, Corinna
    Buescheck, Franziska
    Krech, Till
    Lutz, Florian
    Lennartz, Maximilian
    Harms, Luisa
    Lawrenz, Lisa
    Moeller-Koop, Christina
    Simon, Ronald
    Jacobsen, Frank
    Wilczak, Waldemar
    Minner, Sarah
    Tsourlakis, Maria Christina
    Chirico, Viktoria
    Weidemann, Soeren
    Haese, Alexander
    Steuber, Thomas
    Salomon, Georg
    Matiu, Michael
    Vettorazzi, Eik
    Michl, Uwe
    Budaeus, Lars
    Tilki, Derya
    Thederan, Imke
    Pehrke, Dirk
    Beyer, Burkhard
    Fraune, Christoph
    Goebel, Cosima
    Heinrich, Marie
    Juhnke, Manuela
    Moeller, Katharina
    Bawahab, Ahmed Abdulwahab Abdullah
    Uhlig, Ria
    Huland, Hartwig
    Heinzer, Hans
    Graefen, Markus
    Schlomm, Thorsten
    EUROPEAN UROLOGY, 2018, 73 (05) : 674 - 683