Finite-action solutions of Yang-Mills equations on de Sitter dS4 and anti-de Sitter AdS4 spaces

被引:16
作者
Ivanova, Tatiana A. [1 ]
Lechtenfeld, Olaf [2 ,3 ]
Popov, Alexander D. [2 ,3 ]
机构
[1] JINR, Bogoliubov Lab Theoret Phys, Dubna 141980, Moscow Region, Russia
[2] Leibniz Univ Hannover, Inst Theoret Phys, Appelstr 2, D-30167 Hannover, Germany
[3] Leibniz Univ Hannover, Riemann Ctr Geometry & Phys, Appelstr 2, D-30167 Hannover, Germany
关键词
Solitons Monopoles and Instantons; Differential and Algebraic Geometry; Classical Theories of Gravity; Confinement; INSTANTONS; SPHALERONS;
D O I
10.1007/JHEP11(2017)017
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider pure SU(2) Yang-Mills theory on four-dimensional de Sitter dS(4) and anti-de Sitter AdS(4) spaces and construct various solutions to the Yang-Mills equations. On de Sitter space we reduce the Yang-Mills equations via an SU(2)-equivariant ansatz to Newtonian mechanics of a particle moving in R-3 under the influence of a quartic potential. Then we describe magnetic and electric-magnetic solutions, both Abelian and non-Abelian, all having finite energy and finite action. A similar reduction on anti-de Sitter space also yields Yang-Mills solutions with finite energy and action. We propose a lower bound for the action on both backgrounds. Employing another metric on AdS(4), the SU(2) Yang-Mills equations are reduced to an analytic continuation of the above particle mechanics from R-3 to R-2,R- 1. We discuss analytical solutions to these equations, which produce infinite-action configurations. After a Euclidean continuation of dS(4) and AdS(4) we also present self-dual (instanton-type) Yang-Mills solutions on these backgrounds.
引用
收藏
页数:35
相关论文
共 24 条
[11]   Orbifold instantons, moment maps, and Yang-Mills theory with sources [J].
Ivanova, Tatiana A. ;
Lechtenfeld, Olaf ;
Popov, Alexander D. ;
Szabo, Richard J. .
PHYSICAL REVIEW D, 2013, 88 (10)
[12]   Instantons and Yang-Mills Flows on Coset Spaces [J].
Ivanova, Tatiana A. ;
Lechtenfeld, Olaf ;
Popov, Alexander D. ;
Rahn, Thorsten .
LETTERS IN MATHEMATICAL PHYSICS, 2009, 89 (03) :231-247
[13]   Yang-Mills instantons and dyons on group manifolds [J].
Ivanova, Tatiana A. ;
Lechtenfeld, Olaf .
PHYSICS LETTERS B, 2008, 670 (01) :91-94
[14]  
Jaffe A.M., 1980, Progress in Physics, V2
[15]  
Kleihaus Burkhard, 2016, Classical and Quantum Gravity, V33, DOI 10.1088/0264-9381/33/23/234002
[16]   Sasakian quiver gauge theories and instantons on Calabi-Yau cones [J].
Lechtenfeld, Olaf ;
Popov, Alexander D. ;
Szabo, Richard J. .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 20 (04) :821-882
[17]   SOLITONS, BOUNCES AND SPHALERONS ON A CIRCLE [J].
LIANG, JQ ;
MULLERKIRSTEN, HJW ;
TCHRAKIAN, DH .
PHYSICS LETTERS B, 1992, 282 (1-2) :105-110
[18]  
Manton N., 2004, TOPOLOGICAL SOLITONS, DOI [10.1017/CBO9780511617034, DOI 10.1017/CBO9780511617034]
[19]   SPHALERONS ON A CIRCLE [J].
MANTON, NS ;
SAMOLS, TM .
PHYSICS LETTERS B, 1988, 207 (02) :179-184
[20]   Yet another family of diagonal metrics for de Sitter and anti-de Sitter spacetimes [J].
Podolsky, Jiri ;
Hruska, Ondrej .
PHYSICAL REVIEW D, 2017, 95 (12)