Extended Differential Balancing for Nonlinear Dynamical Systems

被引:3
|
作者
Sarkar, Arijit [1 ]
Scherpen, Jacquelien M. A. [1 ]
机构
[1] Univ Groningen, Fac Sci & Engn, Jan C Willems Ctr Syst & Control, Engn & Technol Inst Groningen, NL-9747 AG Groningen, Netherlands
来源
IEEE CONTROL SYSTEMS LETTERS | 2022年 / 6卷
基金
荷兰研究理事会;
关键词
Observability; Controllability; Reduced order systems; Nonlinear dynamical systems; Computational modeling; Time-varying systems; Symmetric matrices; Balancing; contraction; LMIs; model reduction; nonlinear systems; MODEL ORDER REDUCTION; CONTROLLABILITY; OBSERVABILITY; REALIZATION; TRUNCATION;
D O I
10.1109/LCSYS.2022.3183528
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter, we construct extended balancing theory for nonlinear systems in the contraction framework. At first, we introduce the concept of the extended differential observability Gramian and inverse of the extended differential controllability Gramian for nonlinear dynamical systems and show their correspondence with generalized differential Gramians. We also provide how extended differential balancing can be utilized for model reduction to get a smaller apriori error bound in comparison with generalized differential balancing. We illustrate the results with an example of a mass-spring-damper system considering friction.
引用
收藏
页码:3170 / 3175
页数:6
相关论文
共 50 条
  • [31] Stabilizability of fractional dynamical systems
    Krishnan Balachandran
    Venkatesan Govindaraj
    Luis Rodríguez-Germá
    Juan J. Trujillo
    Fractional Calculus and Applied Analysis, 2014, 17 : 511 - 531
  • [32] ON THE CONTROLLABILITY OF FRACTIONAL DYNAMICAL SYSTEMS
    Balachandran, Krishnan
    Kokila, Jayakumar
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2012, 22 (03) : 523 - 531
  • [33] Stabilizability of fractional dynamical systems
    Balachandran, Krishnan
    Govindaraj, Venkatesan
    Rodriguez-Germa, Luis
    Trujillo, Juan J.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (02) : 511 - 531
  • [34] CONTROLLABILITY OF NONLINEAR FRACTIONAL DELAY DYNAMICAL SYSTEMS
    Nirmala, R. Joice
    Balachandran, K.
    Rodriguez-Germa, L.
    Trujillo, J. J.
    REPORTS ON MATHEMATICAL PHYSICS, 2016, 77 (01) : 87 - 104
  • [35] CONTROLLABILITY OF NONLINEAR IMPULSIVE INTEGRO-DIFFERENTIAL FRACTIONAL TIME-INVARIANT SYSTEMS
    Huang, Yong
    Liu, Zhenhai
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2019, 31 (03) : 329 - 341
  • [36] On a Geometric Notion of Duality in Nonlinear Control Systems
    Meiners, Florian
    Himmel, Andreas
    Adamy, Jurgen
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (04) : 2122 - 2133
  • [37] Observability and State Estimation for a Class of Nonlinear Systems
    Tsinias, John
    Kitsos, Constantinos
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (06) : 2621 - 2628
  • [38] Control Configuration Selection for Multivariable Nonlinear Systems
    Shaker, Hamid Reza
    Komareji, Mohammad
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (25) : 8583 - 8587
  • [39] Lebesgue piecewise affine approximation of nonlinear systems
    Azuma, Shun-ichi
    Imura, Jun-ichi
    Sugie, Toshiharu
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2010, 4 (01) : 92 - 102
  • [40] Numerical controllability of fractional dynamical systems
    Balachandran, Krishnan
    Govindaraj, Venkatesan
    OPTIMIZATION, 2014, 63 (08) : 1267 - 1279