Nonremovable zero Lyapunov exponents

被引:42
作者
Gorodetski, AS [1 ]
Ilyashenko, YS
Kleptsyn, VA
Nalsky, MB
机构
[1] Independent Moscow Univ, Moscow, Russia
[2] Moscow MV Lomonosov State Univ, Moscow, Russia
[3] Cornell Univ, Ithaca, NY 14853 USA
[4] Russian Acad Sci, VA Steklov Math Inst, Moscow 117901, Russia
[5] ENS, UMPA, UMR 5669, CNRS, Lyon, France
基金
俄罗斯基础研究基金会; 美国国家科学基金会;
关键词
Lyapunov exponent; partially hyperbolic system; nonuniform hyperbolicity; dynamical system; skew product; Bernoulli diffeomorphism;
D O I
10.1007/s10688-005-0014-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Skew products over a Bernoulli shift with a circle fiber are studied. We prove that in the space of such products there exists a nonempty open set of mappings each of which possesses an invariant ergodic measure with one of the Lyapunov exponents equal to zero. The conjecture that the space of C-2-diffeomorphisms of the 3-dimensional torus into itself has a similar property is discussed.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 17 条
[1]  
Abraham R., 1970, P S PURE MATH, V14, P5
[2]  
[Anonymous], P STEKLOV I
[3]   Removing zero Lyapunov exponents [J].
Baraviera, AT ;
Bonatti, C .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 :1655-1670
[4]   Genericity of zero Lyapunov exponents [J].
Bochi, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 :1667-1696
[5]   Uniform (projective) hyperbolicity or no hyperbolicity: A dichotomy for generic conservative maps [J].
Bochi, J ;
Viana, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (01) :113-123
[6]  
Dolgopyat D, 2002, ERGOD THEOR DYN SYST, V22, P409
[7]  
GORODETSKI A, 2001, THESIS MOSCOW STATE
[8]  
Gorodetskii A. S., 1999, FUNCT ANAL APPL, V33, P16
[9]  
Hirsch M. W., 1977, LECT NOTES MATH, V583
[10]  
Ilyashenko Yu., 1999, NONLOCAL BIFURCATION