Proteomics-Enabled Deep Learning Machine Algorithms Can Enhance Prediction of Mortality

被引:46
作者
Unterhuber, Matthias [1 ]
Kresoja, Karl-Patrik [1 ]
Rommel, Karl-Philipp [1 ]
Besler, Christian [1 ]
Baragetti, Andrea [2 ,3 ]
Kloeting, Nora [4 ,5 ]
Ceglarek, Uta [6 ]
Blueher, Matthias [4 ,5 ]
Scholz, Markus [7 ,8 ]
Catapano, Alberico L. [2 ,3 ]
Thiele, Holger [1 ]
Lurz, Philipp [1 ]
机构
[1] Univ Leipzig, Dept Cardiol, Heart Ctr Leipzig, Leipzig, Germany
[2] Univ Milan, Dept Pharmacol & Biomol Sci, Milan, Italy
[3] IRCCS MultiMed, Milan, Italy
[4] Univ Leipzig, Med Dept 3, Med Ctr, Endocrinol Nephrol Rheumatol, Leipzig, Germany
[5] Helmholtz Inst Metab Obes & Vasc Res HIMAG Helmho, Leipzig, Germany
[6] Univ Leipzig, Inst Lab Med Clin Chem & Mol Diagnost, Leipzig, Germany
[7] Univ Leipzig, Med Fac, Inst Med Informat Stat & Epidemiol, Leipzig, Germany
[8] LIFE Res Ctr Civilizat Dis, Leipzig, Germany
关键词
deep learning; machine learning; mortality prediction; proteomics; risk score; CARDIOVASCULAR RISK; THICKNESS; MODELS;
D O I
10.1016/j.jacc.2021.08.018
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Individualized risk prediction represents a prerequisite for providing personalized medicine. OBJECTIVES This study compared proteomics-enabled machine-learning (ML) algorithms with classical and clinical risk prediction methods for all-cause mortality in cohorts of patients with cardiovascular risk factors in the LIFE-Heart Study, followed by validation in the PLIC (Progressione della Lesione Intimale Carotidea) study. METHODS Using the OLINK-Cardiovascular-II panel, 92 proteins were measured in a cohort of 1,998 individuals from the LIFE-Heart Study (derivation) and 772 subjects from the PLIC cohort (external validation). We constructed protein based mortality prediction models using eXtreme Gradient Boosting (XGBoost) and a neural network, comparing the prediction performance with classical clinical risk scores (Systemic Coronary Risk Evaluation, Framingham), logistic and Cox regression models. RESULTS All-cause mortality occurred in 156 (8%) patients in the internal validation and 68 (9%) patients in the external validation cohort, within a median follow-up of 10 and 11 years, respectively. On internal and external validation, the Framingham Risk Score achieved areas under the curve (AUCs) of 0.64 (95% CI: 0.59-0.68) and 0.65 (95% CI: 0.58-0.74), logistic regression AUCs of 0.65 (95% CI: 0.57-0.73) and 0.67 (95% CI: 0.59-0.74), Cox regression AUCs of 0.55 (95% CI: 0.51-0.59) and 0.65 (95% CI: 0.57-0.73), the XGBoost classifier AUCs of 0.83 (95% CI: 0.79-0.87) and 0.91 (95% CI: 0.86-0.95), the XGBoost survival estimator AUCs of 0.83 (95% CI: 0.79-0.87) and 0.93 (95% CI: 0.88-0.97), and the neural network AUCs of 0.87 (95% CI: 0.83-0.91) and 0.94 (95% CI: 0.90-0.98), respectively (modern vs classical ML: P < 0.001). CONCLUSIONS ML-driven multiprotein risk models outperform classical regression models and clinical scores for prediction of all-cause mortality in patients at increased cardiovascular risk. (J Am Coll Cardiol 2021;78:1621-1631) (c) 2021 by the American College of Cardiology Foundation.
引用
收藏
页码:1621 / 1631
页数:11
相关论文
共 29 条
[1]  
Abdelhafiz AH, 2012, AGING DIS, V3, P11
[2]   A time-dependent discrimination index for survival data [J].
Antolini, L ;
Boracchi, P ;
Biganzoli, E .
STATISTICS IN MEDICINE, 2005, 24 (24) :3927-3944
[3]   Subclinical atherosclerosis is associated with Epicardial Fat Thickness and hepatic steatosis in the general population [J].
Baragetti, A. ;
Pisano, G. ;
Bertelli, C. ;
Garlaschelli, K. ;
Grigore, L. ;
Fracanzani, A. L. ;
Fargion, S. ;
Norata, G. D. ;
Catapano, A. L. .
NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES, 2016, 26 (02) :141-153
[4]   Pentraxin 3 (PTX3) plasma levels and carotid intima media thickness progression in the general population [J].
Baragetti, A. ;
Knoflach, M. ;
Cuccovillo, I. ;
Grigore, L. ;
Casula, M. ;
Garlaschelli, K. ;
Mantovani, A. ;
Wick, G. ;
Kiechl, S. ;
Willeit, J. ;
Bottazzi, B. ;
Catapano, A. L. ;
Norata, G. D. .
NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES, 2014, 24 (05) :518-523
[5]   Recently Discovered Adipokines and Cardio-Metabolic Comorbidities in Childhood Obesity [J].
Barraco, Gloria Maria ;
Luciano, Rosa ;
Semeraro, Michela ;
Prieto-Hontoria, Pedro L. ;
Manco, Melania .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (11) :19760-19776
[6]   Statin Trials, Cardiovascular Events, and Coronary Artery Calcification Implications for a Trial-Based Approach to Statin Therapy in MESA [J].
Mortensen, Martin Bodtker ;
Falk, Erling ;
Li, Dong ;
Nasir, Khurram ;
Blaha, Michael J. ;
Sandfort, Veit ;
Rodriguez, Carlos Jose ;
Ouyang, Pamela ;
Budoff, Matthew .
JACC-CARDIOVASCULAR IMAGING, 2018, 11 (02) :221-230
[7]   Predictive value of targeted proteomics for coronary plaque morphology in patients with suspected coronary artery disease [J].
Bom, Michiel J. ;
Levin, Evgeni ;
Driessen, Roel S. ;
Danad, Ibrahim ;
Van Kuijk, Cornelis C. ;
van Rossum, Albert C. ;
Narula, Jagat ;
Min, James K. ;
Leipsic, Jonathon A. ;
Pereira, Joao P. Belo ;
Taylor, Charles A. ;
Nieuwdorp, Max ;
Raijmakers, Pieter G. ;
Koenig, Wolfgang ;
Groen, Albert K. ;
Stroes, Erik S. G. ;
Knaapen, Paul .
EBIOMEDICINE, 2019, 39 :109-117
[8]   Estimation of ten-year risk of fatal cardiovascular disease in Europe:: the SCORE project [J].
Conroy, RM ;
Pyörälä, K ;
Fitzgerald, AP ;
Sans, S ;
Menotti, A ;
De Backer, G ;
De Bacquer, D ;
Ducimetière, P ;
Jousilahti, P ;
Keil, U ;
Njolstad, I ;
Oganov, RG ;
Thomsen, T ;
Tunstall-Pedoe, H ;
Tverdal, A ;
Wedel, H ;
Whincup, P ;
Wilhelmsen, L ;
Graham, IM .
EUROPEAN HEART JOURNAL, 2003, 24 (11) :987-1003
[9]   General cardiovascular risk profile for use in primary care - The Framingham Heart Study [J].
D'Agostino, Ralph B. ;
Vasan, Ramachandran S. ;
Pencina, Michael J. ;
Wolf, Philip A. ;
Cobain, Mark ;
Massaro, Joseph M. ;
Kannel, William B. .
CIRCULATION, 2008, 117 (06) :743-753
[10]   Machine Learning in Medicine [J].
Deo, Rahul C. .
CIRCULATION, 2015, 132 (20) :1920-1930