Proteomics-Enabled Deep Learning Machine Algorithms Can Enhance Prediction of Mortality

被引:40
作者
Unterhuber, Matthias [1 ]
Kresoja, Karl-Patrik [1 ]
Rommel, Karl-Philipp [1 ]
Besler, Christian [1 ]
Baragetti, Andrea [2 ,3 ]
Kloeting, Nora [4 ,5 ]
Ceglarek, Uta [6 ]
Blueher, Matthias [4 ,5 ]
Scholz, Markus [7 ,8 ]
Catapano, Alberico L. [2 ,3 ]
Thiele, Holger [1 ]
Lurz, Philipp [1 ]
机构
[1] Univ Leipzig, Dept Cardiol, Heart Ctr Leipzig, Leipzig, Germany
[2] Univ Milan, Dept Pharmacol & Biomol Sci, Milan, Italy
[3] IRCCS MultiMed, Milan, Italy
[4] Univ Leipzig, Med Dept 3, Med Ctr, Endocrinol Nephrol Rheumatol, Leipzig, Germany
[5] Helmholtz Inst Metab Obes & Vasc Res HIMAG Helmho, Leipzig, Germany
[6] Univ Leipzig, Inst Lab Med Clin Chem & Mol Diagnost, Leipzig, Germany
[7] Univ Leipzig, Med Fac, Inst Med Informat Stat & Epidemiol, Leipzig, Germany
[8] LIFE Res Ctr Civilizat Dis, Leipzig, Germany
关键词
deep learning; machine learning; mortality prediction; proteomics; risk score; CARDIOVASCULAR RISK; THICKNESS; MODELS;
D O I
10.1016/j.jacc.2021.08.018
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Individualized risk prediction represents a prerequisite for providing personalized medicine. OBJECTIVES This study compared proteomics-enabled machine-learning (ML) algorithms with classical and clinical risk prediction methods for all-cause mortality in cohorts of patients with cardiovascular risk factors in the LIFE-Heart Study, followed by validation in the PLIC (Progressione della Lesione Intimale Carotidea) study. METHODS Using the OLINK-Cardiovascular-II panel, 92 proteins were measured in a cohort of 1,998 individuals from the LIFE-Heart Study (derivation) and 772 subjects from the PLIC cohort (external validation). We constructed protein based mortality prediction models using eXtreme Gradient Boosting (XGBoost) and a neural network, comparing the prediction performance with classical clinical risk scores (Systemic Coronary Risk Evaluation, Framingham), logistic and Cox regression models. RESULTS All-cause mortality occurred in 156 (8%) patients in the internal validation and 68 (9%) patients in the external validation cohort, within a median follow-up of 10 and 11 years, respectively. On internal and external validation, the Framingham Risk Score achieved areas under the curve (AUCs) of 0.64 (95% CI: 0.59-0.68) and 0.65 (95% CI: 0.58-0.74), logistic regression AUCs of 0.65 (95% CI: 0.57-0.73) and 0.67 (95% CI: 0.59-0.74), Cox regression AUCs of 0.55 (95% CI: 0.51-0.59) and 0.65 (95% CI: 0.57-0.73), the XGBoost classifier AUCs of 0.83 (95% CI: 0.79-0.87) and 0.91 (95% CI: 0.86-0.95), the XGBoost survival estimator AUCs of 0.83 (95% CI: 0.79-0.87) and 0.93 (95% CI: 0.88-0.97), and the neural network AUCs of 0.87 (95% CI: 0.83-0.91) and 0.94 (95% CI: 0.90-0.98), respectively (modern vs classical ML: P < 0.001). CONCLUSIONS ML-driven multiprotein risk models outperform classical regression models and clinical scores for prediction of all-cause mortality in patients at increased cardiovascular risk. (J Am Coll Cardiol 2021;78:1621-1631) (c) 2021 by the American College of Cardiology Foundation.
引用
收藏
页码:1621 / 1631
页数:11
相关论文
共 29 条
  • [1] Abdelhafiz AH, 2012, AGING DIS, V3, P11
  • [2] A time-dependent discrimination index for survival data
    Antolini, L
    Boracchi, P
    Biganzoli, E
    [J]. STATISTICS IN MEDICINE, 2005, 24 (24) : 3927 - 3944
  • [3] Subclinical atherosclerosis is associated with Epicardial Fat Thickness and hepatic steatosis in the general population
    Baragetti, A.
    Pisano, G.
    Bertelli, C.
    Garlaschelli, K.
    Grigore, L.
    Fracanzani, A. L.
    Fargion, S.
    Norata, G. D.
    Catapano, A. L.
    [J]. NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES, 2016, 26 (02) : 141 - 153
  • [4] Pentraxin 3 (PTX3) plasma levels and carotid intima media thickness progression in the general population
    Baragetti, A.
    Knoflach, M.
    Cuccovillo, I.
    Grigore, L.
    Casula, M.
    Garlaschelli, K.
    Mantovani, A.
    Wick, G.
    Kiechl, S.
    Willeit, J.
    Bottazzi, B.
    Catapano, A. L.
    Norata, G. D.
    [J]. NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES, 2014, 24 (05) : 518 - 523
  • [5] Recently Discovered Adipokines and Cardio-Metabolic Comorbidities in Childhood Obesity
    Barraco, Gloria Maria
    Luciano, Rosa
    Semeraro, Michela
    Prieto-Hontoria, Pedro L.
    Manco, Melania
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (11): : 19760 - 19776
  • [6] Predictive value of targeted proteomics for coronary plaque morphology in patients with suspected coronary artery disease
    Bom, Michiel J.
    Levin, Evgeni
    Driessen, Roel S.
    Danad, Ibrahim
    Van Kuijk, Cornelis C.
    van Rossum, Albert C.
    Narula, Jagat
    Min, James K.
    Leipsic, Jonathon A.
    Pereira, Joao P. Belo
    Taylor, Charles A.
    Nieuwdorp, Max
    Raijmakers, Pieter G.
    Koenig, Wolfgang
    Groen, Albert K.
    Stroes, Erik S. G.
    Knaapen, Paul
    [J]. EBIOMEDICINE, 2019, 39 : 109 - 117
  • [7] Estimation of ten-year risk of fatal cardiovascular disease in Europe:: the SCORE project
    Conroy, RM
    Pyörälä, K
    Fitzgerald, AP
    Sans, S
    Menotti, A
    De Backer, G
    De Bacquer, D
    Ducimetière, P
    Jousilahti, P
    Keil, U
    Njolstad, I
    Oganov, RG
    Thomsen, T
    Tunstall-Pedoe, H
    Tverdal, A
    Wedel, H
    Whincup, P
    Wilhelmsen, L
    Graham, IM
    [J]. EUROPEAN HEART JOURNAL, 2003, 24 (11) : 987 - 1003
  • [8] General cardiovascular risk profile for use in primary care - The Framingham Heart Study
    D'Agostino, Ralph B.
    Vasan, Ramachandran S.
    Pencina, Michael J.
    Wolf, Philip A.
    Cobain, Mark
    Massaro, Joseph M.
    Kannel, William B.
    [J]. CIRCULATION, 2008, 117 (06) : 743 - 753
  • [9] Machine Learning in Medicine
    Deo, Rahul C.
    [J]. CIRCULATION, 2015, 132 (20) : 1920 - 1930
  • [10] 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
    Goff, David C., Jr.
    Lloyd-Jones, Donald M.
    Bennett, Glen
    Coady, Sean
    D'Agostino, Ralph B., Sr.
    Gibbons, Raymond
    Greenland, Philip
    Lackland, Daniel T.
    Levy, Daniel
    O'Donnell, Christopher J.
    Robinson, Jennifer G.
    Schwartz, J. Sanford
    Shero, Susan T.
    Smith, Sidney C., Jr.
    Sorlie, Paul
    Stone, Neil J.
    Wilson, Peter W. F.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2014, 63 (25) : 2935 - 2959