Talbot Effect for Exciton Polaritons

被引:37
作者
Gao, T. [1 ]
Estrecho, E. [1 ]
Li, G. [1 ]
Egorov, O. A. [2 ]
Ma, X. [3 ,4 ]
Winkler, K. [5 ]
Kamp, M. [5 ]
Schneider, C. [5 ]
Hoefling, S. [5 ,6 ]
Truscott, A. G. [1 ]
Ostrovskaya, E. A. [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 2601, Australia
[2] Univ Jena, Abbe Ctr Photon, Inst Condensed Matter Theory & Solid State Opt, Max Wien Pl 1, D-07743 Jena, Germany
[3] Univ Paderborn, Dept Phys, Warburger Str 100, D-33098 Paderborn, Germany
[4] Univ Paderborn, Ctr Optoelect & Photon Paderborn CeOPP, D-33098 Paderborn, Germany
[5] Univ Wurzburg, Wilhelm Conrad Rontgen Res Ctr Complex Mat Syst, Tech Phys, Hubland, D-97074 Wurzburg, Germany
[6] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland
基金
澳大利亚研究理事会;
关键词
BOSE-EINSTEIN CONDENSATION; OPTICS; ARRAY; INTERFEROMETRY; STATES; LIGHT;
D O I
10.1103/PhysRevLett.117.097403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate, experimentally and theoretically, a Talbot effect for hybrid light-matter waves- an exciton-polariton condensate formed in a semiconductor microcavity with embedded quantum wells. The characteristic "Talbot carpet" is produced by loading the exciton-polariton condensate into a micro-structured one-dimensional periodic array of mesa traps, which creates an array of phase-locked sources for coherent polariton flow in the plane of the quantum wells. The spatial distribution of the Talbot fringes outside the mesas mimics the near-field diffraction of a monochromatic wave on a periodic amplitude and phase grating with the grating period comparable to the wavelength. Despite the lossy nature of the polariton system, the Talbot pattern persists for distances exceeding the size of the mesas by an order of magnitude. Thus, our experiment demonstrates efficient shaping of the two-dimensional flow of coherent exciton polaritons by a one-dimensional "flat lens."
引用
收藏
页数:7
相关论文
共 57 条
[1]   Matter waves in anharmonic periodic potentials [J].
Alexander, Tristram J. ;
Salerno, Mario ;
Ostrovskaya, Elena A. ;
Kivshar, Yuri S. .
PHYSICAL REVIEW A, 2008, 77 (04)
[2]   Angular Talbot effect [J].
Azana, Jose ;
de Chatellus, Hugues Guillet .
PHYSICAL REVIEW LETTERS, 2014, 112 (21)
[3]   Bosonic Condensation and Disorder-Induced Localization in a Flat Band [J].
Baboux, F. ;
Ge, L. ;
Jacqmin, T. ;
Biondi, M. ;
Galopin, E. ;
Lemaitre, A. ;
Le Gratiet, L. ;
Sagnes, I. ;
Schmidt, S. ;
Tuereci, H. E. ;
Amo, A. ;
Bloch, J. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[4]   Bose-einstein condensation of microcavity polaritons in a trap [J].
Balili, R. ;
Hartwell, V. ;
Snoke, D. ;
Pfeiffer, L. ;
West, K. .
SCIENCE, 2007, 316 (5827) :1007-1010
[5]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[6]  
Berry M, 2001, PHYS WORLD, V14, P39
[7]  
Berry MV, 1996, J MOD OPTIC, V43, P2139, DOI 10.1080/09500349608232876
[8]   Factorization of numbers with the temporal talbot effect: Optical implementation by a sequence of shaped ultrashort pulses [J].
Bigourd, Damien ;
Chatel, Beatrice ;
Schleich, Wolfgang P. ;
Girard, Bertrand .
PHYSICAL REVIEW LETTERS, 2008, 100 (03)
[9]  
Byrnes T, 2014, NAT PHYS, V10, P803, DOI [10.1038/nphys3143, 10.1038/NPHYS3143]
[10]   Quantum fluids of light [J].
Carusotto, Iacopo ;
Ciuti, Cristiano .
REVIEWS OF MODERN PHYSICS, 2013, 85 (01) :299-366