PHASELESS SUPER-RESOLUTION IN THE CONTINUOUS DOMAIN

被引:0
作者
Cho, Myung [1 ]
Thrampoulidis, Christos [2 ]
Xu, Weiyu [1 ]
Hassibi, Babak [2 ]
机构
[1] Univ Iowa, Dept ECE, Iowa City, IA 52242 USA
[2] CALTECH, Dept EE, Pasadena, CA 91125 USA
来源
2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2017年
关键词
super-resolution; microscopy; phaseless; continuous domain; atomic norm; MATRIX PENCIL METHOD; HIGH-RESOLUTION; MICROSCOPY; PARAMETERS; RETRIEVAL;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Phaseless super-resolution refers to the problem of super-resolving a signal from only its low-frequency Fourier magnitude measurements. In this paper, we consider the phaseless super-resolution problem of recovering a sum of sparse Dirac delta functions which can be located anywhere in the continuous time-domain. For such signals in the continuous domain, we propose a novel Semidefinite Programming (SDP) based signal recovery method to achieve the phaseless super-resolution. This work extends the recent work of Jaganathan et al. [1], which considered phaseless super-resolution for discrete signals on the grid.
引用
收藏
页码:3814 / 3818
页数:5
相关论文
共 24 条
  • [1] [Anonymous], 2000, MATRIX ANAL APPL LIN
  • [2] [Anonymous], 2012, CVX: Matlab software for disciplined convex programming
  • [3] MR microscopy and high resolution'small animal MRI: applications in neuroscience research
    Benveniste, H
    Blackband, S
    [J]. PROGRESS IN NEUROBIOLOGY, 2002, 67 (05) : 393 - 420
  • [4] Sparse sampling of signal innovations
    Blu, Thierry
    Dragotti, Pier-Luigi
    Vetterli, Martin
    Marziliano, Pina
    Coulot, Lionel
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (02) : 31 - 40
  • [5] Boyd S, 2004, CONVEX OPTIMIZATION
  • [6] A NEGATIVE STAINING METHOD FOR HIGH RESOLUTION ELECTRON MICROSCOPY OF VIRUSES
    BRENNER, S
    HORNE, RW
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA, 1959, 34 (01) : 103 - 110
  • [7] Phase Retrieval via Matrix Completion
    Candes, Emmanuel J.
    Eldar, Yonina C.
    Strohmer, Thomas
    Voroninski, Vladislav
    [J]. SIAM REVIEW, 2015, 57 (02) : 225 - 251
  • [8] Towards a Mathematical Theory of Super- resolution
    Candes, Emmanuel J.
    Fernandez-Granda, Carlos
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (06) : 906 - 956
  • [9] Caratheodory C., 1911, Rend. Circ. Mat. Palermo (1884-1940), V32, P193, DOI [DOI 10.1007/BF03014795, 10.1007/BF03014795]
  • [10] Caratheodory C., 1911, Rend. Circ. Mat. Palermo (1884-1940), V32, P218