A robust flat-chip solid oxide fuel cell coupled with catalytic partial oxidation of methane

被引:18
作者
Gong, Siqi [1 ]
Zeng, Hongyu [1 ]
Lin, Jin [2 ]
Shi, Yixiang [1 ]
Hu, Qiang [3 ]
Cai, Ningsheng [1 ]
机构
[1] Tsinghua Univ, Key Lab Thermal Sci & Power Engn, Minist Educ, Dept Energy & Power Engn, Beijing 100084, Peoples R China
[2] Tsinghua Univ, State Key Lab Control & Simulat Power Syst & Gene, Dept Elect Engn, Beijing 100084, Peoples R China
[3] Zhejiang Zhentai Energy Technol Co Ltd, Lishui 323000, Peoples R China
基金
中国国家自然科学基金;
关键词
Catalytic partial oxidation; Flat-chip SOFC; Redox cycling; Thermal cycling; MICRO-TUBULAR SOFC; COMBINED HEAT; CHP SYSTEM; POWER; PERFORMANCE; GENERATION; ANODE; DESIGN;
D O I
10.1016/j.jpowsour.2018.09.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study demonstrates a module that consists of solid oxide fuel cell (SOFC) with flat-chip configuration and a catalytic partial oxidation (CPDX) reformer. The CPDX reformer uses Rh supported by Al2O3 as catalyst and functions effectively. The optimized temperature of CPDX reformer is 800 degrees C and the optimal C/O ratio to operate the reformer is ca. 0.8 where the maximum reforming efficiency, i.e. 86.1% can be obtained. The CPDX reformer can be coupled with a flat-chip SOFC, which is advantageous for its good thermal shock resistance, quick startup and good response characteristics. The flat-chip SOFC is able to function with a temperature difference over 850 degrees C across the cell itself and can survive the harsh tests of rapid thermal cycling with the temperature change rate well above 200 degrees C.min(-1), and repetitive redox cycling at least 23 times.
引用
收藏
页码:124 / 132
页数:9
相关论文
共 27 条
[1]  
Al-Sayari S. A., 2013, OPEN CATAL J, V6
[2]   Integration of a Solid Oxide Fuel Cell with an Absorption Chiller for Dynamic Generation of Combined Cooling and Power for a Residential Application [J].
Asghari, M. ;
McVay, D. J. ;
Brouwer, J. .
SOLID OXIDE FUEL CELLS 15 (SOFC-XV), 2017, 78 (01) :243-255
[3]   Performance of SOFC coupled with n-C4H10 autothermal reformer: Carbon deposition and development of anode structure [J].
Bae, Gyujong ;
Bae, Joongmyeon ;
Kim-Lohsoontorn, Pattaraporn ;
Jeong, Jihoon .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (22) :12346-12358
[4]   Performance and life time test on a 5 kW SOFC system for distributed cogeneration [J].
Barrera, Rosa ;
De Biase, Sabrina ;
Ginocchio, Stefano ;
Bedogni, Stefano ;
Montelatici, Lorenzo .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (12) :3193-3196
[5]   Planar Metal-Supported SOFC with Novel Cermet Anode [J].
Blennow, P. ;
Hjelm, J. ;
Klemenso, T. ;
Persson, A. H. ;
Ramousse, S. ;
Mogensen, M. .
FUEL CELLS, 2011, 11 (05) :661-668
[6]   Evaluating SOFC-based Power System Concepts for Unmanned Undersea Vehicles [J].
Braun, R. J. ;
Kattke, K. .
SOLID OXIDE FUEL CELLS 11 (SOFC-XI), 2009, 25 (02) :291-300
[7]   Cycling of three solid oxide fuel cell types [J].
Bujalski, Waldemar ;
Dikwal, Chinnan M. ;
Kendall, Kevin .
JOURNAL OF POWER SOURCES, 2007, 171 (01) :96-100
[8]   Application of solid oxide fuel cell technology for power generation-A review [J].
Choudhury, Arnab ;
Chandra, H. ;
Arora, A. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 20 :430-442
[9]  
Christian Enger B., 2008, APPL CATAL A-GEN, V346, P1, DOI DOI 10.1016/j.apcata.2008.05.018
[10]   Characterization of the electrochemical performance of micro-tubular SOFC in partial reduction and oxidation conditions [J].
Dikwal, C. M. ;
Bujalski, W. ;
Kendall, K. .
JOURNAL OF POWER SOURCES, 2008, 181 (02) :267-273