Autophagy through 4EBP1 and AMPK regulates oxidative stress-induced premature senescence in auditory cells

被引:36
|
作者
Tsuchihashi, Nana Akagi [1 ,2 ]
Hayashi, Ken [1 ,3 ]
Dan, Katsuaki [4 ]
Goto, Fumiyuki [1 ]
Nomura, Yasuyuki [5 ]
Fujioka, Masato [1 ]
Kanzaki, Sho [1 ]
Komune, Shizuo [2 ]
Ogawa, Kaoru [1 ]
机构
[1] Keio Univ, Sch Med, Dept Otorhinolaryngol Head & Neck Surg, Tokyo 1608582, Japan
[2] Kyushu Univ, Sch Med, Dept Otorhinolaryngol Head & Neck Surg, Fukuoka 8120054, Japan
[3] Kamio Mem Hosp, Dept Otorhinolaryngol, Tokyo 1010063, Japan
[4] Keio Univ, Core Instrumentat Facil, Collaborat Res Resources, Tokyo 1608582, Japan
[5] Nihon Univ, Sch Med, Dept Otorhinolaryngol Head & Neck Surg, Tokyo 1738610, Japan
关键词
premature senescence; autophagy; AMPK; oxidative stress; auditory cell; CELLULAR SENESCENCE; HEARING-LOSS; PHOSPHORYLATION; RESTRICTION; ACCUMULATION; INDUCTION; PATHWAYS; CANCER; DAMAGE; SIRT3;
D O I
10.18632/oncotarget.2874
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The aim of this study was to determine whether autophagy and AMPK contribute to premature senescence in auditory cells. Incubating HEI-OC1 auditory cells with 5 mM H2O2 for 1 h induced senescence, as demonstrated by senescence-associated beta-galactosidase (SA-beta-gal) staining. H2O2 treatment significantly delayed population-doubling time, leaving cell viability unchanged. Furthermore, the proportion of SA-beta-gal-positive cells significantly increased. Autophagy-related protein expression increased, with Atg7 and LC3-II peaking 6 h and Lamp2 peaking 24 h after H2O2 treatment. The expression of these proteins decreased 48 h after treatment. Transmission electron microscopy revealed lipofuscin and aggregates within autolysosomes, which accumulated markedly in the cytoplasm of HEI-OC1 cells 48 h after treatment. Akt and P70S6 phosphorylation markedly decreased after H2O2 treatment, but 4EBP1 phosphorylation significantly increased 48 h after treatment. After RNAi-mediated knockdown (KD) of Atg7 and AMPK, H2O2-treated cells displayed dense SA-beta-gal staining. Also, premature senescence was significantly induced. These suggest that a negative feedback loop may exist between autophagy and AMPK signaling pathways in HEI-OC1 cells. In our model, oxidative stress-induced premature senescence occurred due to impaired autophagy function through 4EBP1 phosphorylation. Our results also indicate that AMPK may regulate premature senescence in auditory cells in an autophagy-dependent and independent manner.
引用
收藏
页码:3644 / 3655
页数:12
相关论文
共 50 条
  • [1] Licochalcone D Ameliorates Oxidative Stress-Induced Senescence via AMPK Activation
    Maharajan, Nagarajan
    Ganesan, Chitra Devi
    Moon, Changjong
    Jang, Chul-Ho
    Oh, Won-Keun
    Cho, Gwang-Won
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (14)
  • [2] Caffeine Protects Skin from Oxidative Stress-Induced Senescence through the Activation of Autophagy
    Li, Yi-Fang
    Ouyang, Shu-Hua
    Tu, Long-Fang
    Wang, Xi
    Yuan, Wei-Lin
    Wang, Guo-En
    Wu, Yan-Ping
    Duan, Wen-Jun
    Yu, Hong-Min
    Fang, Zhong-Ze
    Kurihara, Hiroshi
    Zhang, Youwei
    He, Rong-Rong
    THERANOSTICS, 2018, 8 (20): : 5713 - 5730
  • [3] Oxidative Stress-induced Interaction between Autophagy and Cellular Senescence in Human Keratinocytes
    Yamaguchi, Masahiro
    Kajiya, Hiroshi
    Egashira, Rui
    Yasunaga, Madoka
    Hagio-Izaki, Kanako
    Sato, Ayako
    Toshimitsu, Takuya
    Naito, Tort
    Ohno, Jun
    JOURNAL OF HARD TISSUE BIOLOGY, 2018, 27 (03) : 199 - 208
  • [4] Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence
    Tai, Haoran
    Wang, Zhe
    Gong, Hui
    Han, Xiaojuan
    Zhou, Jiao
    Wang, Xiaobo
    Wei, Xiawei
    Ding, Yi
    Huang, Ning
    Qin, Jianqiong
    Zhang, Jie
    Wang, Shuang
    Gao, Fei
    Chrzanowska-Lightowlers, Zofia M.
    Xiang, Rong
    Xiao, Hengyi
    AUTOPHAGY, 2017, 13 (01) : 99 - 113
  • [5] Prolonged Exposure to High Glucose Induces Premature Senescence Through Oxidative Stress and Autophagy in Retinal Pigment Epithelial Cells
    Chiu, Chien-Chih
    Cheng, Kai-Chun
    Lin, Yi-Hsiung
    He, Chen-Xi
    Bow, Yung-Ding
    Li, Chia-Yang
    Wu, Chang-Yi
    Wang, Hui-Min David
    Sheu, Shwu-Jiuan
    ARCHIVUM IMMUNOLOGIAE ET THERAPIAE EXPERIMENTALIS, 2023, 71 (01)
  • [6] Autophagy regulates the degeneration of the auditory cortex through the AMPK-mTOR-ULK1 signaling pathway
    Yuan, Jie
    Zhao, Xueyan
    Hu, Yujuan
    Sun, Haiying
    Gong, Guoqing
    Huang, Xiang
    Chen, Xubo
    Xia, Mingyu
    Sun, Chen
    Huang, Qilin
    Sun, Yu
    Kong, Wen
    Kong, Weijia
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2018, 41 (04) : 2086 - 2098
  • [7] Bamboo Leaf Flavonoids Suppress Oxidative Stress-Induced Senescence of HaCaT Cells and UVB-Induced Photoaging of Mice through p38 MAPK and Autophagy Signaling
    Gu, Yanpei
    Xue, Fan
    Xiao, Hongrui
    Chen, Lihuan
    Zhang, Ying
    NUTRIENTS, 2022, 14 (04)
  • [8] Prolonged Exposure to High Glucose Induces Premature Senescence Through Oxidative Stress and Autophagy in Retinal Pigment Epithelial Cells
    Chien-Chih Chiu
    Kai-Chun Cheng
    Yi-Hsiung Lin
    Chen-Xi He
    Yung-Ding Bow
    Chia-Yang Li
    Chang-Yi Wu
    Hui-Min David Wang
    Shwu-Jiuan Sheu
    Archivum Immunologiae et Therapiae Experimentalis, 2023, 71
  • [9] XBP1-FoxO1 interaction regulates ER stress-induced autophagy in auditory cells
    Kishino, Akihiro
    Hayashi, Ken
    Hidai, Chiaki
    Masuda, Takeshi
    Nomura, Yasuyuki
    Oshima, Takeshi
    SCIENTIFIC REPORTS, 2017, 7
  • [10] Over-expression of Nicotinamide phosphoribosyltransferase in mouse cells confers protective effect against oxidative and ER stress-induced premature senescence
    Nuriliani, Ardaning
    Nakahata, Yasukazu
    Ahmed, Rezwana
    Khaidizar, Fiqri D.
    Matsui, Takaaki
    Bessho, Yasumasa
    GENES TO CELLS, 2020, 25 (08) : 593 - 602