Simplicity and complexity in the cyanobacterial circadian clock mechanism

被引:30
作者
Dong, Guogang [1 ]
Kim, Yong-Ick [1 ]
Golden, Susan S. [1 ]
机构
[1] Univ Calif San Diego, Ctr Chronobiol, La Jolla, CA 92093 USA
基金
美国国家卫生研究院;
关键词
GENE-EXPRESSION; KAIC PHOSPHORYLATION; CELL-DIVISION; CRYSTAL-STRUCTURE; OUTPUT PATHWAYS; ATPASE ACTIVITY; PROTEIN; OSCILLATOR; RHYTHMS; FEEDBACK;
D O I
10.1016/j.gde.2010.09.002
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The circadian clock of the cyanobacterium Synechococcus elongatus PCC 7942 is built on a three-protein central oscillator that can be reconstituted in vitro, a redox-sensitive input for synchronization with the environment, and a bacterial two-component signal transduction pathway for global transcriptional regulation. This review covers the most recent progress in our understanding of the biological and biochemical mechanism of this bacterial clock, such as the discovery of a quinone-binding activity of the oscillator protein KaiA, the molecular mechanism of circadian control of cell division, and the global control of gene expression via modulation of DNA topology.
引用
收藏
页码:619 / 625
页数:7
相关论文
共 50 条
  • [41] Monitoring Protein-Protein Interactions in the Cyanobacterial Circadian Clock in Real Time via Electron Paramagnetic Resonance Spectroscopy
    Chow, Gary K.
    Chavan, Archana G.
    Heisler, Joel C.
    Chang, Yong-Gang
    LiWang, Andy
    Britt, R. David
    BIOCHEMISTRY, 2020, 59 (26) : 2387 - 2400
  • [42] Molecular mechanism of mammalian circadian clock
    Isojima, Y
    Okumura, N
    Nagai, K
    JOURNAL OF BIOCHEMISTRY, 2003, 134 (06) : 777 - 784
  • [43] KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system
    Kitayama, Y
    Iwasaki, H
    Nishiwaki, T
    Kondo, T
    EMBO JOURNAL, 2003, 22 (09) : 2127 - 2134
  • [44] Light Wavelength as a Contributory Factor of Environmental Fitness in the Cyanobacterial Circadian Clock
    Kawamoto, Naohiro
    Nakanishi, Shuji
    Shimakawa, Ginga
    PLANT AND CELL PHYSIOLOGY, 2024, 65 (05) : 798 - 808
  • [45] Thermodynamically Induced Conformational Changes of the Cyanobacterial Circadian Clock Protein KaiB
    Mutoh, Risa
    Mino, Hiroyuki
    Murakami, Reiko
    Uzumaki, Tatsuya
    Ishiura, Masahiro
    APPLIED MAGNETIC RESONANCE, 2011, 40 (04) : 525 - 534
  • [46] Systems-level characterization of the kernel mechanism of the cyanobacterial circadian oscillator
    Ma, Lan
    Ranganathan, Rama
    BIOSYSTEMS, 2014, 117 : 30 - 39
  • [47] Regulation of the Cyanobacterial Circadian Clock by Electrochemically Controlled Extracellular Electron Transfer
    Lu, Yue
    Nishio, Koichi
    Matsuda, Shoichi
    Toshima, Yuki
    Ito, Hiroshi
    Konno, Tomohiro
    Ishihara, Kazuhiko
    Kato, Souichiro
    Hashimoto, Kazuhito
    Nakanishi, Shuji
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (08) : 2208 - 2211
  • [48] Synchronization of the circadian clock to the environment tracked in real time
    Fang, Mingxu
    Chavan, Archana G.
    LiWang, Andy
    Golden, Susan S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (13)
  • [49] Real-Time In Vitro Fluorescence Anisotropy of the Cyanobacterial Circadian Clock
    Heisler, Joel
    Chavan, Archana
    Chang, Yong-Gang
    LiWang, Andy
    METHODS AND PROTOCOLS, 2019, 2 (02) : 1 - 15
  • [50] Reconstitution of an intact clock reveals mechanisms of circadian timekeeping
    Chavan, Archana G.
    Swan, Jeffrey A.
    Heisler, Joel
    Sancar, Cigdem
    Ernst, Dustin C.
    Fang, Mingxu
    Palacios, Joseph G.
    Spangler, Rebecca K.
    Bagshaw, Clive R.
    Tripathi, Sarvind
    Crosby, Priya
    Golden, Susan S.
    Partch, Carrie L.
    LiWang, Andy
    SCIENCE, 2021, 374 (6564) : 170 - +