Cell performance of direct methanol alkaline fuel cell (DMAFC) using anion exchange membranes prepared from PVA-Based block copolymer

被引:27
作者
Higa, Mitsuru [1 ,2 ]
Mehdizadeh, Soroush [1 ]
Feng, Shiyan [1 ]
Endo, Nobutaka [1 ,2 ]
Kakihana, Yuriko [1 ,2 ]
机构
[1] Yamaguchi Univ, Grad Sch Sci & Technol Innovat, Div Appl Fine Chem, 2-16-1 Tokiwadai, Ube, Yamaguchi 7558611, Japan
[2] Yamaguchi Univ, Blue Energy Ctr SGE Technol BEST, 2-16-1 Tokiwadai, Ube, Yamaguchi 7558611, Japan
关键词
Direct methanol alkaline fuel cell; Anion exchange membrane; Polymer electrolyte membrane; COMPOSITE MEMBRANES; BLENDED MEMBRANE; POLYMER; ELECTROLYTE; ALCOHOL; FABRICATION; MODEL; ANODE; WATER;
D O I
10.1016/j.memsci.2019.117618
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Direct methanol alkaline fuel cells (DMAFCs) with anion exchange membranes (AEMs) have the potential to address many of the problems faced by their acidic counterparts made with proton exchange membranes. Polyvinyl alcohol (PVA) is a candidate material for polymer electrolyte membranes (PEMs) for DMAFCs due to its excellent methanol barrier properties. In this study, PVA-based PEMs for a DMAFC process were prepared from PVA-based block copolymers with varying glutaraldehyde (GA) cross-linker concentrations. The properties and DMAFC performance of the PVA-block type PEMs at various concentrations of methanol were measured and compared with a commercially available AEM, Neosepta (R) AMX. A single cell DMAFC test using the PEM cross-linked with 0.01 vol% GA and AMX produced the maximum power of 99.6 mW/cm(2) and 15.2 mW/cm(2), respectively. When the methanol concentration was increased to 10 wt%, the PEM produced 94.8 mW/cm(2), while AMX produced significantly less power at 7.7 mW/cm(2) under the same conditions. Even at the high methanol concentration of 30 wt%, the PEM produced 42.2 mW/cm(2), while AMX did not generate any power under the same conditions.
引用
收藏
页数:8
相关论文
共 60 条
  • [1] A high selectivity quaternized polysulfone membrane for alkaline direct methanol fuel cells
    Abuin, Graciela C.
    Franceschini, Esteban A.
    Nonjola, Patrick
    Mathe, Mkhulu K.
    Modibedi, Mmalewane
    Corti, Horacio R.
    [J]. JOURNAL OF POWER SOURCES, 2015, 279 : 450 - 459
  • [2] Facile preparation of blend proton exchange membranes with highly sulfonated poly(arylene ether) and poly(arylene ether sulfone) bearing dense triazoles
    Ahn, Min-Kyoon
    Lee, Bongho
    Jang, Joseph
    Min, Cheong-Min
    Lee, Su-Bin
    Pak, Chanho
    Lee, Jae-Suk
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2018, 560 : 58 - 66
  • [3] Aricò AS, 2001, FUEL CELLS, V1, P133
  • [4] Nanocatalyst for direct methanol fuel cell (DMFC)
    Basri, S.
    Kamarudin, S. K.
    Daud, W. R. W.
    Yaakub, Z.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (15) : 7957 - 7970
  • [5] Scientific aspects of polymer electrolyte fuel cell durability and degradation
    Borup, Rod
    Meyers, Jeremy
    Pivovar, Bryan
    Kim, Yu Seung
    Mukundan, Rangachary
    Garland, Nancy
    Myers, Deborah
    Wilson, Mahlon
    Garzon, Fernando
    Wood, David
    Zelenay, Piotr
    More, Karren
    Stroh, Ken
    Zawodzinski, Tom
    Boncella, James
    McGrath, James E.
    Inaba, Minoru
    Miyatake, Kenji
    Hori, Michio
    Ota, Kenichiro
    Ogumi, Zempachi
    Miyata, Seizo
    Nishikata, Atsushi
    Siroma, Zyun
    Uchimoto, Yoshiharu
    Yasuda, Kazuaki
    Kimijima, Ken-ichi
    Iwashita, Norio
    [J]. CHEMICAL REVIEWS, 2007, 107 (10) : 3904 - 3951
  • [6] Sulfonated polyimides bearing benzimidazole groups for direct methanol fuel cell applications
    Chen, Kangcheng
    Hu, Zhaoxia
    Endo, Nobutaka
    Fang, Jianhua
    Higa, Mitsuru
    Okamoto, Ken-ichi
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2010, 351 (1-2) : 214 - 221
  • [7] Direct conversion of carbon fuels in a molten carbonate fuel cell
    Cherepy, NJ
    Krueger, R
    Fiet, KJ
    Jankowski, AF
    Cooper, JF
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (01) : A80 - A87
  • [8] Nano-composite of PtRu alloy electrocatalyst and electronically conducting polymer for use as the anode in a direct methanol fuel cell
    Choi, JH
    Park, KW
    Lee, HK
    Kim, YM
    Lee, JS
    Sung, YE
    [J]. ELECTROCHIMICA ACTA, 2003, 48 (19) : 2781 - 2789
  • [9] Ionic behavior across charged membranes in methanol-water solutions. I: Membrane potential
    Chou, TJ
    Tanioka, A
    [J]. JOURNAL OF MEMBRANE SCIENCE, 1998, 144 (1-2) : 275 - 284
  • [10] An analytical model for alkaline membrane direct methanol fuel cell
    Deng, Hao
    Chen, Jixin
    Jiao, Kui
    Huang, Xuri
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 74 : 376 - 390