Complete CO Oxidation by O2 and H2O over Pt-CeO2-δ/MgO Following Langmuir-Hinshelwood and Mars-van Krevelen Mechanisms, Respectively

被引:61
作者
Wang, Yanru [1 ,2 ]
Ma, Jiamin [1 ,2 ]
Wang, Xiuyi [1 ,2 ]
Zhang, Zheshan [1 ,2 ]
Zhao, Jiahan [1 ,2 ]
Yan, Jie [3 ,4 ]
Du, Yaping [1 ,2 ]
Zhang, Hongbo [1 ,2 ]
Ma, Ding [3 ,4 ]
机构
[1] Nankai Univ, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[2] Nankai Univ, Natl Inst Adv Mat, Tianjin Key Lab Rare Earth Mat & Applicat, Tianjin 300350, Peoples R China
[3] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[4] Peking Univ, Coll Engn, BIC ESAT, Beijing 100871, Peoples R China
关键词
CO oxidation; H2O effect; kinetics; active site; reaction mechanism; WATER-GAS SHIFT; ACTIVE-SITES; CATALYSTS; INTERFACE; HYDROGEN; SINGLE; ATOM; SELECTIVITY; ACTIVATION; MOISTURE;
D O I
10.1021/acscatal.1c02507
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO oxidation has attracted great attention in the automobile exhaust treatment and fuel cell industrial process, with Pt as one of the most promising catalysts. The efficiency of the catalyst is still below the requirement of the industry due to limited understanding about the reaction mechanism of CO oxidation by O-2 or H2O, which were proposed to be following the similar/same reaction mechanism (the Mars-van Krevelen reaction mechanism). Our recent results indicate that this assumption might not be correct. Here, we design a catalyst with a combination of isolated platinum atoms (Pt-1) and nanoparticles (Pt-n) supported on MgO-dispersed CeO2-delta (CeO2-delta/MgO), named as 0.5Pt-xCeO(2-delta)/MgO (x = 0, 1, 2, 5, 10, 20) to establish two types of active sites, one is solely over Pt NPs (type-I) and the other is at the interface between Pt atoms and the reducible metal oxide support CeO2-delta (type-II), and we perform kinetic, thermodynamic, and in situ spectroscopy analysis on this catalyst to prove that CO oxidation by O-2 undergoes the Langmuir-Hinshelwood reaction mechanism on type-I sites (Pt NPs), while water-gas shift (WGS) reaction undergoes the Marsvan Krevelen reaction mechanism at the interface between Pt atoms and the reducible support CeO2-delta (type-II) verified by activation energy assessment and the reactant and product pressure dependency studies applied, in which a systematic reduction of the reaction barrier of CO oxidation (by O-2) was obtained once the size of Pt NPs increased and was independent of the changes in the size of CeO2-delta, while the reaction barrier of the WGS was very sensitive to the size of CeO2-delta and slightly inert against the size of Pt NPs. Additionally, there is competitive adsorption between CO and O-2 over Pt-CeO2-delta/MgO, while there is no competitive adsorption between CO and H2O based on our pressure dependency studies. Collectively, our current work provides convincing evidence that the promotion of H2O on CO oxidation is the change of the reaction mechanism rather than the simple effect of hydroxyl dissociated by H2O dosing.
引用
收藏
页码:11820 / 11830
页数:11
相关论文
共 57 条
[1]   High Selectivity of Supported Ru Catalysts in the Selective CO Methanation-Water Makes the Difference [J].
Abdel-Mageed, Ali M. ;
Eckle, Stephan ;
Behm, R. Juergen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (27) :8672-8675
[2]   Chemisorption of CO and Mechanism of CO Oxidation on Supported Platinum Nanoclusters [J].
Allian, Ayman D. ;
Takanabe, Kazuhiro ;
Fujdala, Kyle L. ;
Hao, Xianghon ;
Truex, Timothy J. ;
Cai, Juan ;
Buda, Corneliu ;
Neurock, Matthew ;
Iglesia, Enrique .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (12) :4498-4517
[3]   Structure sensitivity of selective CO oxidation over Pt/γ-Al2O3 [J].
Atalik, B. ;
Uner, D. .
JOURNAL OF CATALYSIS, 2006, 241 (02) :268-275
[4]   Low-Temperature CO Oxidation over a Ternary Oxide Catalyst with High Resistance to Hydrocarbon Inhibition [J].
Binder, Andrew J. ;
Toops, Todd J. ;
Unocic, Raymond R. ;
Parks, James E., II ;
Dai, Sheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (45) :13263-13267
[5]   Maximum Noble-Metal Efficiency in Catalytic Materials: Atomically Dispersed Surface Platinum [J].
Bruix, Albert ;
Lykhach, Yaroslava ;
Matolinova, Iva ;
Neitzel, Armin ;
Skala, Tomas ;
Tsud, Nataliya ;
Vorokhta, Mykhailo ;
Stetsovych, Vitalii ;
Sevcikova, Klara ;
Myslivecek, Josef ;
Fiala, Roman ;
Vaclavu, Michal ;
Prince, Kevin C. ;
Bruyere, Stephanie ;
Potin, Valerie ;
Illas, Francesc ;
Matolin, Vladimir ;
Libuda, Joerg ;
Neyman, Konstantin M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (39) :10525-10530
[6]   Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts [J].
Cargnello, Matteo ;
Doan-Nguyen, Vicky V. T. ;
Gordon, Thomas R. ;
Diaz, Rosa E. ;
Stach, Eric A. ;
Gorte, Raymond J. ;
Fornasiero, Paolo ;
Murray, Christopher B. .
SCIENCE, 2013, 341 (6147) :771-773
[7]   Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water [J].
Cortright, RD ;
Davda, RR ;
Dumesic, JA .
NATURE, 2002, 418 (6901) :964-967
[8]   WATER-PROMOTED OXIDATION OF CARBON-MONOXIDE OVER TIN(IV) OXIDE-SUPPORTED PALLADIUM [J].
CROFT, G ;
FULLER, MJ .
NATURE, 1977, 269 (5629) :585-586
[9]   Negative activation energies in CO oxidation over an icosahedral Au/Mg(OH)2 catalyst [J].
Cunningham, DAH ;
Vogel, W ;
Haruta, M .
CATALYSIS LETTERS, 1999, 63 (1-2) :43-47
[10]   The mechanism of low-temperature CO oxidation with Au/Fe2O3 catalysts:: a combined Mossbauer, FT-IR, and TAP reactor study [J].
Daniells, ST ;
Overweg, AR ;
Makkee, M ;
Moulijn, JA .
JOURNAL OF CATALYSIS, 2005, 230 (01) :52-65