Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water

被引:112
作者
Liu, Kang [1 ]
Zhang, Fu-Shen [1 ]
机构
[1] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Dept Solid Waste Treatment & Recycling, 18 Shuangqing Rd, Beijing 100085, Peoples R China
基金
中国国家自然科学基金;
关键词
Spent lithium-ion battery; Dechlorination; Polyvinyl chloride; Metal leaching; Subcritical water; BROMINATED EPOXY-RESIN; PRINTED-CIRCUIT BOARDS; HYDROMETALLURGICAL PROCESS; VALUABLE METALS; SUPERCRITICAL WATER; ORGANIC-ACIDS; RECOVERY; DEGRADATION; DECOMPOSITION; PVC;
D O I
10.1016/j.jhazmat.2016.04.080
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this work, an effective and environmentally friendly process for the recovery of cobalt (Co) and lithium (Li) from spent lithium-ion batteries (LIBs) and simultaneously detoxification of polyvinyl chloride (PVC) in subcritical water was developed. Lithium cobalt oxide (LiCoO2) power from spent LIBs and PVC were co-treated by subcritical water oxidation, in which PVC served as a hydrochloric acid source to promote metal leaching. The dechlorination of PVC and metal leaching was achieved simultaneously under subcritical water oxidation. More than 95% Co and nearly 98% Li were recovered under the optimum conditions: temperature 350 degrees C, PVC/LiCoO2 ratio 3:1, time 30 min, and a solid/liquid ratio 16:1 (g/L), respectively. Moreover, PVC was completely dechlorinated at temperatures above 350 degrees C without any release of toxic chlorinated organic compounds. Assessment on economical and environmental impacts revealed that the PVC and LiCoO2 subcritical co-treatment process had significant technical, economic and environmental benefits over the traditional hydrometallurgy and pyrometallurgy processes. This innovative co-treatment process is efficient, environmentally friendly and adequate for Co and Li recovery from spent LIBs and simultaneous dechlorination of PVC in subcritical water. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 25
页数:7
相关论文
共 50 条
  • [31] Coupling Electrochemical Leaching with Solvent Extraction for Recycling Spent Lithium-Ion Batteries
    Zhao, Jingjing
    Zhou, Fengyin
    Wang, Hongya
    Qu, Xin
    Wang, Danfeng
    Cai, Yuqi
    Zheng, Zhiyu
    Wang, Dihua
    Yin, Huayi
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2024, 58 (38) : 16803 - 16814
  • [32] Extraction of valuable metals from waste lithium iron phosphate batteries by subcritical water leaching method with synergistic waste polyvinyl chloride
    Ruan, Zhongkui
    Wang, Shaohua
    Zhang, Shuhui
    Duan, Xiaowei
    Chen, Juan
    Ren, Xiaohan
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (05):
  • [33] Recovery of Cobalt, Nickel, and Lithium from Spent Lithium-Ion Batteries with Gluconic Acid Leaching Process: Kinetics Study
    Gerold, Eva
    Lerchbammer, Reinhard
    Antrekowitsch, Helmut
    BATTERIES-BASEL, 2024, 10 (04):
  • [34] Selective leaching of lithium from spent lithium-ion batteries using sulfuric acid and oxalic acid
    Yu, Haijun
    Wang, Dongxing
    Rao, Shuai
    Duan, Lijuan
    Shao, Cairu
    Tu, Xiaohui
    Ma, Zhiyuan
    Cao, Hongyang
    Liu, Zhiqiang
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2024, 31 (04) : 688 - 696
  • [35] Selective recycling of lithium from spent lithium-ion batteries by carbothermal reduction combined with multistage leaching
    Zhang, Guangwen
    Yuan, Xue
    Tay, Chor Yong
    He, Yaqun
    Wang, Haifeng
    Duan, Chenlong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 314
  • [36] A comprehensive review of the reclamation of resources from spent lithium-ion batteries
    Srivastava, Varsha
    Rantala, Venla
    Mehdipour, Parisa
    Kauppinen, Toni
    Tuomikoski, Sari
    Heponiemi, Anne
    Runtti, Hanna
    Tynjala, Pekka
    Reis, Dos
    Lassi, Ulla
    CHEMICAL ENGINEERING JOURNAL, 2023, 474
  • [37] A comprehensive review: Evaluating emerging green leaching technologies for recycling spent lithium-ion batteries
    Shi, Huiying
    Zhang, Jianfei
    Ou, Leming
    CHEMICAL ENGINEERING JOURNAL, 2025, 506
  • [38] Hydrometallurgical process for recovery of lithium and cobalt from spent lithium-ion secondary batteries
    Tsai, Lung-Chang
    Tsai, Fang-Chang
    Ma, Ning
    Shu, Chi-Min
    ENVIRONMENT MATERIALS AND ENVIRONMENT MANAGEMENT PTS 1-3, 2010, 113-116 : 1688 - +
  • [39] Fundamentals of the recycling of spent lithium-ion batteries
    Li, Pengwei
    Luo, Shaohua
    Lin, Yicheng
    Xiao, Jiefeng
    Xia, Xiaoning
    Liu, Xin
    Wang, Li
    He, Xiangming
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (24) : 11967 - 12013
  • [40] Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects
    Golmohammadzadeh, Rabeeh
    Rashchi, Fereshteh
    Vahidi, Ehsan
    WASTE MANAGEMENT, 2017, 64 : 244 - 254