Exp-function method for solving Maccari's system

被引:101
作者
Zhang, Sheng [1 ]
机构
[1] Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China
关键词
Exp-function method; generalized solitonary solutions; nonlinear evolution equations;
D O I
10.1016/j.physleta.2007.05.091
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, the Exp-function method is used to seek exact solutions of Maccari's system. As a result, single and combined generalized solitonary solutions are obtained, from which some known solutions obtained by extended sine-Gordon equation method and improved hyperbolic function method are recovered as special cases. It is shown that the Exp-function method provides a very effective and powerful mathematical tool for solving nonlinear evolution equations in mathematical physics. (C) 2007 Elsevier B.V. All tights reserved.
引用
收藏
页码:65 / 71
页数:7
相关论文
共 42 条
[1]  
Abassy TA, 2004, INT J NONLIN SCI NUM, V5, P327
[2]  
Abdusalam HA, 2005, INT J NONLIN SCI NUM, V6, P99
[3]  
Ablowitz MJ., 1991, Nonlinear Evolution Equations and Inverse Scattering, DOI 10.1017/CBO9780511623998
[4]   Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method [J].
Ebaid, A. .
PHYSICS LETTERS A, 2007, 365 (03) :213-219
[5]  
El-Shahed M, 2005, INT J NONLIN SCI NUM, V6, P163
[6]   Variational iteration method for autonomous ordinary differential systems [J].
He, JH .
APPLIED MATHEMATICS AND COMPUTATION, 2000, 114 (2-3) :115-123
[7]   Variational iteration method - a kind of non-linear analytical technique: Some examples [J].
He, JH .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1999, 34 (04) :699-708
[8]   Homotopy perturbation method for bifurcation of nonlinear problems [J].
He, JH .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2005, 6 (02) :207-208
[9]   Application of homotopy perturbation method to nonlinear wave equations [J].
He, JH .
CHAOS SOLITONS & FRACTALS, 2005, 26 (03) :695-700
[10]   Variational principles for some nonlinear partial differential equations with variable coefficients [J].
He, JH .
CHAOS SOLITONS & FRACTALS, 2004, 19 (04) :847-851