A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge:: dispersal vs. environmental controls

被引:169
作者
Desbruyères, D
Almeida, A
Biscoito, M
Comtet, T
Khripounoff, A
Le Bris, N
Sarradin, PM
Segonzac, M
机构
[1] IFREMER, Ctr Brest, Dept Environm Profond, F-29280 Plouzane, France
[2] Univ Lisbon, Lab Maritimo Guia, P-2750 Cascais, Portugal
[3] IMAR, Museu Municipal Funchal, P-9004546 Madeira, Portugal
关键词
deep sea; hydrothermal vents; ecology; Mid-Atlantic Ridge; Azores Triple Junction;
D O I
10.1023/A:1004175211848
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
Until 1985, seven vent fields were described from the Mid-Atlantic Ridge (MAR). An eighth field, Mount Saldanha (36 degrees N), discovered in 1998, showed unusual geological and biological settings. Vent sites on the MAR exhibit varied environmental conditions, resulting from depth variation of the axis and associated physical parameters, and different source rocks. These could be considered as first order (i.e. most dominant) factors affecting the composition of vent communities on the MAR, in contrast to the East Pacific Rise (EPR) where geographical isolation appears to be a major determinant of faunal differences. In this paper, the geological setting and vent fluid composition of the fields are considered together with their community composition to tentatively ascertain the order of a hierarchy between dispersal and environmental control. The deepest fields (>3000 m) are rather stable systems. The shallower fields, especially Rainbow and Menez Owen, present some evidence of instability in time and space. The variability in fluid composition is related to phase separation processes (boiling/distillation of subsurface vent fluids) and to the nature of the basement rocks. Depending on depth, phase separation produces gas-enriched and metal-depleted fluids (Menez Gwen, Lucky Strike) or metal-enriched brines (Rainbow, TAG). In addition, high methane content characterises the fluids formed in ultramafic rocks (Rainbow, Logatchev) compared to basaltic rocks. The discrepancy in mineral particulate fluxes at Lucky Strike and Menez Gwen, on one hand, and TAG and Rainbow, on the other, is correlated to the predominance of the vapour or brine phase. The semi-quantitative description of the faunal composition of the different vent fields displays a continuum from Rimicaris-dominated to Bathymodiolus-dominated assemblages. Rather than geographic or bathymetric zonation, this gradation appears to be related to the metal content of the fluids. In addition, the penetration of non vent species into the vent environment increases with decreasing hydrostatic pressure and/or metal content in the fluids. Similarity analysis between vent communities shows that similarity is strongest between Menez Gwen and Lucky Strike (the shallowest fields), less significant between these sites and Rainbow, and weakest for Snake Pit, The inverse relationship between filter feeding organisms and metal concentration in vent fluids could result from a hindrance of mussel bed development by particulate or toxic metal fluxes, and has to be further investigated. Conversely, high metal and particulate content would less affect the more mobile Rimicaris populations. Considering specific similarities of endemic fauna between the four best known hydrothermal vents, the distance between vent fields appears to be a first order parameter. Nevertheless, within the proximity of the Azores Triple Junction area, and in the absence of geographical discontinuity, the similarity between fields stays rather low suggesting faunal islands that have distinct composition and habitat requirements.
引用
收藏
页码:201 / 216
页数:16
相关论文
共 89 条
  • [1] [Anonymous], EOS T
  • [2] BARRIGA F, 1998, EOS T AM GEOPHYS UNI
  • [3] BARRIGA FJA, 1999, C CIENCIAS, V23, P44
  • [4] GROWTH OF JUVENILE MERCENARIA-MERCENARIA AND THE EFFECT OF RESUSPENDED BOTTOM SEDIMENTS
    BRICELJ, VM
    MALOUF, RE
    DEQUILLFELDT, C
    [J]. MARINE BIOLOGY, 1984, 84 (02) : 167 - 173
  • [5] CHEMISTRY OF HOT SPRINGS ON THE MID-ATLANTIC RIDGE
    CAMPBELL, AC
    PALMER, MR
    KLINKHAMMER, GP
    BOWERS, TS
    EDMOND, JM
    LAWRENCE, JR
    CASEY, JF
    THOMPSON, G
    HUMPHRIS, S
    RONA, P
    KARSON, JA
    [J]. NATURE, 1988, 335 (6190) : 514 - 519
  • [6] CANN J, 1994, BRIDGE NEWSLETTER, V4, P1
  • [7] EVIDENCE FOR METHYLOTROPHIC SYMBIONTS IN A HYDROTHERMAL VENT MUSSEL (BIVALVIA, MYTILIDAE) FROM THE MID-ATLANTIC RIDGE
    CAVANAUGH, CM
    WIRSEN, CO
    JANNASCH, HW
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1992, 58 (12) : 3799 - 3803
  • [8] Compared geochemical signatures and the evolution of Menez Gwen (37°50′N) and Lucky Strike (37°17′N) hydrothermal fluids, south of the Azores Triple Junction on the Mid-Atlantic Ridge
    Charlou, JL
    Donval, JP
    Douville, E
    Jean-Baptiste, P
    Radford-Knoery, J
    Fouquet, Y
    Dapoigny, A
    Stievenard, M
    [J]. CHEMICAL GEOLOGY, 2000, 171 (1-2) : 49 - 75
  • [9] Gases and helium isotopes in high temperature solutions sampled before and after ODP Leg 158 drilling at TAG hydrothermal field (26 degrees N, MAR)
    Charlou, JL
    Donval, JP
    JeanBaptiste, P
    Dapoigny, A
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1996, 23 (23) : 3491 - 3494
  • [10] HYDROTHERMAL METHANE VENTING BETWEEN 12-DEGREES-N AND 26-DEGREES-N ALONG THE MID-ATLANTIC RIDGE
    CHARLOU, JL
    DONVAL, JP
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1993, 98 (B6) : 9625 - 9642