Initial Seeds Selection in Dynamic Clustering Method Based on Data Depth

被引:0
作者
Zhang, Caiya [1 ]
Jin, Ze [2 ]
机构
[1] Zhejiang Univ City Coll, Sch Comp & Comp Sci, Hangzhou 310003, Zhejiang, Peoples R China
[2] Cornell Univ, Dept Stat Sci, Ithaca, NY USA
来源
INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: BIG DATA AND MACHINE LEARNING TECHNIQUES, ISCIDE 2015, PT II | 2015年 / 9243卷
关键词
Clustering; Initial seeds; Projection depth; CONSTITUTION; ATOMS;
D O I
10.1007/978-3-319-23862-3_60
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Resorting to the theory of atomic models and the tool of data depth, we propose a novel method for initial seeds selection in dynamic clustering method. We define the cohesion of a point in a given data set, which includes the information of the significance and locations of neighboring points together. Then, the dynamic clustering algorithm based on cohesion is proposed. Compared with the density-based dynamic clustering algorithm, the clustering results demonstrate that our proposed method is more effective and robust.
引用
收藏
页码:603 / 611
页数:9
相关论文
共 9 条
[1]   On the Constitution of Atoms and Molecules [J].
Bohr, N. .
PHILOSOPHICAL MAGAZINE, 1913, 26 (151) :1-25
[2]   On the Constitution of Atoms and Molecules [J].
Bohr, N. .
PHILOSOPHICAL MAGAZINE, 1913, 26 (153) :476-502
[3]   The use of multiple measurements in taxonomic problems [J].
Fisher, RA .
ANNALS OF EUGENICS, 1936, 7 :179-188
[4]   On maximum depth and related classifiers [J].
Ghosh, AK ;
Chaudhuri, P .
SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (02) :327-350
[5]   Feature selection for k-means clustering stability: theoretical analysis and an algorithm [J].
Mavroeidis, Dimitrios ;
Marchiori, Elena .
DATA MINING AND KNOWLEDGE DISCOVERY, 2014, 28 (04) :918-960
[6]  
Pavan K. Karteeka, 2011, International Journal of Computer Science & Information Technology, V3, P147, DOI 10.5121/ijcsit.2011.3513
[7]   A method for initialising the K-means clustering algorithm using kd-trees [J].
Redmond, Stephen J. ;
Heneghan, Conor .
PATTERN RECOGNITION LETTERS, 2007, 28 (08) :965-973
[8]  
Serfling R, 2006, DIMACS SER DISCRET M, V72, P1
[9]   General notions of statistical depth function [J].
Zuo, YJ ;
Serfling, R .
ANNALS OF STATISTICS, 2000, 28 (02) :461-482