Taylor Series Method for Second-Order Polynomial ODEs

被引:0
作者
Latypov, Viktor [1 ]
Sokolov, Sergei [1 ]
机构
[1] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
来源
2015 INTERNATIONAL CONFERENCE "STABILITY AND CONTROL PROCESSES" IN MEMORY OF V.I. ZUBOV (SCP) | 2015年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An algorithm for numerical integration of non-linear Lagrange equations is presented. Formulas for approximate solutions are derived using the Taylor Series Method. Radius of convergence of estimates and error bounds are given.
引用
收藏
页码:62 / 64
页数:3
相关论文
共 7 条
[1]  
Arnold V. I., 2013, Mathematical methods of classical mechanics, V60
[2]  
Babadzhanjanz L., 2006, J MATH SCI-U TOKYO, V139, P7025, DOI [10.1007/s10958-006-0404-3, DOI 10.1007/S10958-006-0404-3]
[3]   Computability with polynomial differential equations [J].
Graca, Daniel S. ;
Campagnolo, Manuel L. ;
Buescu, Jorge .
ADVANCES IN APPLIED MATHEMATICS, 2008, 40 (03) :330-349
[4]  
Hand L.N., 2008, Analytical Mechanics
[5]  
Latypov V. N., 2015, P 1 IFAC C MOD ID CO, P302
[6]  
Shu C., 2000, Differential Quadrature and its Application in Engineering
[7]  
Taylor John Robert, 2005, Classical Mechanics, V1