Local and global approximation theorems for positive linear operators

被引:25
作者
Felten, M [1 ]
机构
[1] Univ Dortmund, D-44221 Dortmund, Germany
关键词
D O I
10.1006/jath.1998.3212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we bridge local and global approximation theorems for positive linear operators via Ditzian-Totik moduli omega(phi)(2)(f, delta) of second order whereby the step-weights phi are functions whose squares are concave. Both direct and converse theorems are derived. In particular we investigate the situation for exponential-type and Bernstein-type operators. (C) 1998 Academic Press.
引用
收藏
页码:396 / 419
页数:24
相关论文
共 16 条
[2]   INVERSE THEOREMS FOR BERNSTEIN POLYNOMIALS [J].
BERENS, H ;
LORENTZ, GG .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1972, 21 (08) :693-&
[3]  
DeVore Ronald A., 1993, CONSTRUTIVE APPROXIM, V303, DOI DOI 10.1007/978-3-662-02888-9
[4]  
DITZIAN Z, 1985, ACTA SCI MATH, V48, P103
[5]   RATE OF CONVERGENCE FOR BERNSTEIN POLYNOMIALS REVISITED [J].
DITZIAN, Z .
JOURNAL OF APPROXIMATION THEORY, 1987, 50 (01) :40-48
[6]   SIMULTANEOUS POLYNOMIAL-APPROXIMATION [J].
DITZIAN, Z ;
JIANG, D ;
LEVIATAN, D .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (06) :1652-1661
[7]   APPROXIMATION OF FUNCTIONS BY POLYNOMIALS IN C[-1, 1] [J].
DITZIAN, Z ;
JIANG, D .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1992, 44 (05) :924-940
[8]   DIRECT ESTIMATE FOR BERNSTEIN POLYNOMIALS [J].
DITZIAN, Z .
JOURNAL OF APPROXIMATION THEORY, 1994, 79 (01) :165-166
[9]  
Ditzian Z., 1987, Moduli of Smoothness
[10]   Direct and inverse estimates for Bernstein polynomials [J].
Felten, M .
CONSTRUCTIVE APPROXIMATION, 1998, 14 (03) :459-468