Deep sr-DDL: Deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations

被引:8
作者
D'Souza, N. S. [1 ]
Nebel, M. B. [2 ,3 ]
Crocetti, D. [2 ]
Robinson, J. [2 ]
Wymbs, N. [2 ,3 ]
Mostofsky, S. H. [2 ,3 ,4 ]
Venkataraman, A. [1 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[2] Kennedy Krieger Inst, Ctr Neurodev & Imaging Res, Baltimore, MD USA
[3] Johns Hopkins Sch Med, Dept Neurol, Baltimore, MD USA
[4] Johns Hopkins Sch Med, Dept Psychiat & Behav Sci, Baltimore, MD USA
基金
美国国家科学基金会;
关键词
Dynamic dictionary learning; Structural regularization; Multimodal integration; Functional magnetic resonance imaging; Diffusion tensor imaging; Clinical severity; RESTING-STATE FMRI; GRAPH LAPLACIAN REGULARIZATION; CONVOLUTIONAL NEURAL-NETWORKS; DEFAULT MODE NETWORK; BRAIN NETWORKS; CONNECTIVITY; AUTISM; CORTEX; MEMORY; DYSPRAXIA;
D O I
10.1016/j.neuroimage.2021.118388
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We propose a novel integrated framework that jointly models complementary information from resting-state functional MRI (rs-fMRI) connectivity and diffusion tensor imaging (DTI) tractography to extract biomarkers of brain connectivity predictive of behavior. Our framework couples a generative model of the connectomics data with a deep network that predicts behavioral scores. The generative component is a structurally-regularized Dynamic Dictionary Learning (sr-DDL) model that decomposes the dynamic rs-fMRI correlation matrices into a collection of shared basis networks and time varying subject-specific loadings. We use the DTI tractography to regularize this matrix factorization and learn anatomically informed functional connectivity profiles. The deep component of our framework is an LSTM-ANN block, which uses the temporal evolution of the subject-specific srDDL loadings to predict multidimensional clinical characterizations. Our joint optimization strategy collectively estimates the basis networks, the subject-specific time-varying loadings, and the neural network weights. We validate our framework on a dataset of neurotypical individuals from the Human Connectome Project (HCP) database to map to cognition and on a separate multi-score prediction task on individuals diagnosed with Autism Spectrum Disorder (ASD) in a five-fold cross validation setting. Our hybrid model outperforms several state-ofthe-art approaches at clinical outcome prediction and learns interpretable multimodal neural signatures of brain organization.
引用
收藏
页数:21
相关论文
共 107 条
  • [61] Default Mode Network in Childhood Autism: Posteromedial Cortex Heterogeneity and Relationship with Social Deficits
    Lynch, Charles J.
    Uddin, Lucina Q.
    Supekar, Kaustubh
    Khouzam, Amirah
    Phillips, Jennifer
    Menon, Vinod
    [J]. BIOLOGICAL PSYCHIATRY, 2013, 74 (03) : 212 - 219
  • [62] The geometry of weighted low-rank approximations
    Manton, JH
    Mahony, R
    Hua, YB
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (02) : 500 - 514
  • [64] Developmental dyspraxia is not limited to imitation in children with autism spectrum disorders
    Mostofsky, Stewart H.
    Dubey, Prachi
    Jerath, Vandna K.
    Jansiewicz, Eva M.
    Goldberg, Melissa C.
    Denckla, Martha B.
    [J]. JOURNAL OF THE INTERNATIONAL NEUROPSYCHOLOGICAL SOCIETY, 2006, 12 (03) : 314 - 326
  • [65] Reduction of motion-related artifacts in resting state fMRI using aCompCor
    Muschelli, John
    Nebel, Mary Beth
    Caffo, Brian S.
    Barber, Anita D.
    Pekar, James J.
    Mostofsky, Stewart H.
    [J]. NEUROIMAGE, 2014, 96 : 22 - 35
  • [66] Intrinsic Visual-Motor Synchrony Correlates With Social Deficits in Autism
    Nebel, Mary Beth
    Eloyan, Ani
    Nettles, Carrie A.
    Sweeney, Kristie L.
    Ament, Katarina
    Ward, Rebecca E.
    Choe, Ann S.
    Barber, Anita D.
    Pekar, James J.
    Mostofsky, Stewart H.
    [J]. BIOLOGICAL PSYCHIATRY, 2016, 79 (08) : 633 - 641
  • [67] Recent structural and functional imaging findings in schizophrenia
    Niznikiewicz, MA
    Kubicki, M
    Shenton, ME
    [J]. CURRENT OPINION IN PSYCHIATRY, 2003, 16 (02) : 123 - 147
  • [68] Nocedal J, 2006, SPRINGER SER OPER RE, P1, DOI 10.1007/978-0-387-40065-5
  • [69] Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain
    Pang, Jiahao
    Cheung, Gene
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (04) : 1770 - 1785
  • [70] Disease prediction using graph convolutional networks: Application to Autism Spectrum Disorder and Alzheimer's disease
    Parisot, Sarah
    Ktena, Sofia Ira
    Ferrante, Enzo
    Lee, Matthew
    Guerrero, Ricardo
    Glocker, Ben
    Rueckert, Daniel
    [J]. MEDICAL IMAGE ANALYSIS, 2018, 48 : 117 - 130