Deep sr-DDL: Deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations

被引:8
作者
D'Souza, N. S. [1 ]
Nebel, M. B. [2 ,3 ]
Crocetti, D. [2 ]
Robinson, J. [2 ]
Wymbs, N. [2 ,3 ]
Mostofsky, S. H. [2 ,3 ,4 ]
Venkataraman, A. [1 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[2] Kennedy Krieger Inst, Ctr Neurodev & Imaging Res, Baltimore, MD USA
[3] Johns Hopkins Sch Med, Dept Neurol, Baltimore, MD USA
[4] Johns Hopkins Sch Med, Dept Psychiat & Behav Sci, Baltimore, MD USA
基金
美国国家科学基金会;
关键词
Dynamic dictionary learning; Structural regularization; Multimodal integration; Functional magnetic resonance imaging; Diffusion tensor imaging; Clinical severity; RESTING-STATE FMRI; GRAPH LAPLACIAN REGULARIZATION; CONVOLUTIONAL NEURAL-NETWORKS; DEFAULT MODE NETWORK; BRAIN NETWORKS; CONNECTIVITY; AUTISM; CORTEX; MEMORY; DYSPRAXIA;
D O I
10.1016/j.neuroimage.2021.118388
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We propose a novel integrated framework that jointly models complementary information from resting-state functional MRI (rs-fMRI) connectivity and diffusion tensor imaging (DTI) tractography to extract biomarkers of brain connectivity predictive of behavior. Our framework couples a generative model of the connectomics data with a deep network that predicts behavioral scores. The generative component is a structurally-regularized Dynamic Dictionary Learning (sr-DDL) model that decomposes the dynamic rs-fMRI correlation matrices into a collection of shared basis networks and time varying subject-specific loadings. We use the DTI tractography to regularize this matrix factorization and learn anatomically informed functional connectivity profiles. The deep component of our framework is an LSTM-ANN block, which uses the temporal evolution of the subject-specific srDDL loadings to predict multidimensional clinical characterizations. Our joint optimization strategy collectively estimates the basis networks, the subject-specific time-varying loadings, and the neural network weights. We validate our framework on a dataset of neurotypical individuals from the Human Connectome Project (HCP) database to map to cognition and on a separate multi-score prediction task on individuals diagnosed with Autism Spectrum Disorder (ASD) in a five-fold cross validation setting. Our hybrid model outperforms several state-ofthe-art approaches at clinical outcome prediction and learns interpretable multimodal neural signatures of brain organization.
引用
收藏
页数:21
相关论文
共 107 条
  • [1] Combination of rs-fMRI and sMRI Data to Discriminate Autism Spectrum Disorders in Young Children Using Deep Belief Network
    Aghdam, Maryam Akhavan
    Sharifi, Arash
    Pedram, Mir Mohsen
    [J]. JOURNAL OF DIGITAL IMAGING, 2018, 31 (06) : 895 - 903
  • [2] Dynamic Conditional Correlation: On Properties and Estimation
    Aielli, Gian Piero
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2013, 31 (03) : 282 - 299
  • [3] Tracking Whole-Brain Connectivity Dynamics in the Resting State
    Allen, Elena A.
    Damaraju, Eswar
    Plis, Sergey M.
    Erhardt, Erik B.
    Eichele, Tom
    Calhoun, Vince D.
    [J]. CEREBRAL CORTEX, 2014, 24 (03) : 663 - 676
  • [4] Disruption of large-scale brain systems in advanced aging
    Andrews-Hanna, Jessica R.
    Snyder, Abraham Z.
    Vincent, Justin L.
    Lustig, Cindy
    Head, Denise
    Raichle, Marcus E.
    Buckner, Randy L.
    [J]. NEURON, 2007, 56 (05) : 924 - 935
  • [5] The Brain's Default Network and Its Adaptive Role in Internal Mentation
    Andrews-Hanna, Jessica R.
    [J]. NEUROSCIENTIST, 2012, 18 (03) : 251 - 270
  • [6] Anirudh R, 2019, INT CONF ACOUST SPEE, P3197, DOI [10.1109/ICASSP.2019.8683547, 10.1109/icassp.2019.8683547]
  • [7] Diffusion tensor imaging (DTI)-based white matter mapping in brain research: A review
    Assaf, Yaniv
    Pasternak, Ofer
    [J]. JOURNAL OF MOLECULAR NEUROSCIENCE, 2008, 34 (01) : 51 - 61
  • [8] Human brain networks function in connectome-specific harmonic waves
    Atasoy, Selen
    Donnelly, Isaac
    Pearson, Joel
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [9] Hierarchical organization of functional connectivity in the mouse brain: a complex network approach
    Bardella, Giampiero
    Bifone, Angelo
    Gabrielli, Andrea
    Gozzi, Alessandro
    Squartini, Tiziano
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [10] Small-world brain networks
    Bassett, Danielle Smith
    Bullmore, Edward T.
    [J]. NEUROSCIENTIST, 2006, 12 (06) : 512 - 523