The effect of streptozotocin (STZ)-induced diabetes on expression and activity of hexokinase, the first enzyme and rate-limiting step in glycolysis, was studied in sensory neurons of lumbar dorsal root ganglia (DRG). The DRG and sciatic nerve of adult rats expressed the hexokinase I isoform only. Immunofluorescent staining of lumbar DRG demonstrated that small-medium neurons and satellite cells exhibited high levels of expression of hexokinase I. Large, mainly proprioceptive neurons, had very low or negative staining for hexokinase L Intracellular localization and biochemical studies on intact DRG from adult rats and cultured adult rat sensory neurons revealed that hexokinase I was almost exclusively found in the mitochondrial compartment. Duration of STZ-diabetes of 6 or 12 weeks diminished hexokinase activity by 28% and 30%, respectively, in lumbar DRG compared with age matched controls (P < 0.05). Quantitative Western blotting showed no effect of diabetes on hexokinase I protein expression in homogenates or mitochondrial preparations from DRG. Immuno fluorescent staining for hexokinase I showed no diabetes-dependent change in small-medium neuron expression in DRG, however, large neurons became positive for hexokinase I (P < 0.05). Such complex effects of diabetes on hexokinase I expression in the DRG may be due to glucose-driven up-regulation of expression or the result of impaired axonal transport and perikaryal accumulation in the large neuron subpopulation. Because hexokinase is the rate-limiting enzyme of glycolysis these results imply that metabolic flux through the glycolytic pathway is reduced in diabetes. This finding, therefore, questions the role of high glucose-induced metabolic flux as a key driving force in reactive oxygen species generation by mitochondria. (C) 2007 Elsevier B.V. All rights reserved.