Diabatic limit, eta invariants and Cauchy-Riemann manifolds of dimension 3

被引:8
作者
Biquard, Olivier
Herzlich, Marc
Rumin, Michel
机构
[1] Univ Strasbourg, CNRS, Inst Rech Math Avancee, F-67084 Strasbourg, France
[2] Univ Montpellier 2, CNRS, Inst Math Model Montpellier, F-34095 Montpellier, France
[3] Univ Paris Sud, CNRS, Lab Math Orsay, F-91405 Orsay, France
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2007年 / 40卷 / 04期
关键词
D O I
10.1016/j.ansens.2007.06.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We relate a recently introduced non-local invariant of compact strictly pseudoconvex Cauchy-Riemann (CR) manifolds of dimension 3 to various eta-invariants: on the one hand a renormalized eta-invariant appearing when considering a sequence of metrics converging to the CR structure by expanding. the size of the Reeb field; on the other hand the eta-invariant of the middle degree operator of the contact complex. We then provide explicit computations for transverse circle invariant CR structures on Seifert manifolds. This yields obstructions to filling a CR manifold by complex hyperbolic, Kahler-Einstein, or Einstein manifolds. (c) 2007 Elsevier Masson SAS.
引用
收藏
页码:589 / 631
页数:43
相关论文
共 55 条
[1]   Geometry and topology of complex hyperbolic and Cauchy-Riemannian manifolds [J].
Apanasov, BN .
RUSSIAN MATHEMATICAL SURVEYS, 1997, 52 (05) :895-928
[2]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .2. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 78 (NOV) :405-432
[3]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .3. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :71-99
[4]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .1. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (JAN) :43-69
[5]  
BEALS R, 1984, J DIFFER GEOM, V20, P343
[6]  
BEALS R, 1988, ANN MATH STUDIES, V119
[7]   Normal C R structures on S3 [J].
Belgun, FA .
MATHEMATISCHE ZEITSCHRIFT, 2003, 244 (01) :125-151
[8]   Normal CR structures on compact 3-manifolds [J].
Belgun, FA .
MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (03) :441-460
[9]   A Burns-Epstein invariant for ache 4-manifolds [J].
Biquard, O ;
Herzlich, M .
DUKE MATHEMATICAL JOURNAL, 2005, 126 (01) :53-100
[10]  
Biquard O, 1997, J REINE ANGEW MATH, V490, P129