共 50 条
Biodegradable magnetic-sensitive shape memory poly(ε-caprolactone)/Fe3O4 nanocomposites
被引:17
|作者:
Gao, Yuliang
[1
]
Zhu, Guangming
[1
]
Xu, Shuogui
[2
,3
]
Ma, Tuotuo
[1
]
Nie, Jing
[1
]
机构:
[1] Northwestern Polytech Univ, Dept Appl Chem, 127 West Friendship Rd, Xian 710072, Shaanxi, Peoples R China
[2] Second Mil Med Univ, Emergency Med Dept, 168 Changhai Rd, Shanghai 200433, Peoples R China
[3] Second Mil Med Univ, Trauma Emergency Ctr, Changhai Hosp, 168 Changhai Rd, Shanghai 200433, Peoples R China
关键词:
biodegradable;
composites;
resins;
stimuli-sensitive polymers;
thermoplastics;
BIOMEDICAL APPLICATIONS;
REMOTE ACTIVATION;
NANOPARTICLES;
COMPOSITES;
POLYMER;
NETWORKS;
D O I:
10.1002/app.45652
中图分类号:
O63 [高分子化学(高聚物)];
学科分类号:
070305 ;
080501 ;
081704 ;
摘要:
A novel biodegradable magnetic-sensitive shape memory poly(epsilon-caprolactone) nanocomposites, which were crosslinked with functionalized Fe3O4 magnetic nanoparticles (MNPs), were synthesized via in situ polymerization method. Fe3O4 MNPs pretreated with gamma-(methacryloyloxy) propyl trimethoxy silane (KH570) were used as crosslinking agents. Because of the crosslinking of functionalized Fe3O4 MNPs with poly(epsilon-caprolactone) prepolymer, the properties of the nanocomposites with different content of functionalized Fe3O4 MNPs, especially the mechanical properties, were significantly improved. The nanocomposites also showed excellent shape memory properties in both 60 degrees C hot water and alternating magnetic field (f=60, 90 kHz, H=38.7, 59.8 kAm(-1)). In hot water bath, all the samples had shape recovery rate (R-r) higher than 98% and shape fixed rate (R-f) nearly 100%. In alternating magnetic field, the R-r of composites was over 85% with the highest at 95.3%. In addition, the nanocomposites also have good biodegradability. (C) 2017 Wiley Periodicals, Inc.
引用
收藏
页数:9
相关论文