HOLDER REGULARITY FOR MIXED LOCAL AND NONLOCAL p-LAPLACE PARABOLIC EQUATIONS

被引:7
作者
Shang, Bin [1 ]
Zhang, Chao [2 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[2] Inst Adv Study Math, Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Expansion of positivity; H?lder continuity; mixed local and nonlocal parabolic p-Laplace equation; HARNACK PRINCIPLE; GRADIENT;
D O I
10.3934/dcds.2022126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a unified proof of Holder regularity of weak solutions for mixed local and nonlocal p-Laplace type parabolic equations with the full range of exponents 1 < p < infinity. Our proof is based on the expansion of positivity together with the energy estimate and De Giorgi type lemma.
引用
收藏
页码:5817 / 5837
页数:21
相关论文
共 31 条
  • [1] Gradient estimates for a class of parabolic systems
    Acerbi, Emilio
    Mingione, Giuseppe
    [J]. DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) : 285 - 320
  • [2] Adimurthi K, 2024, Arxiv, DOI arXiv:2205.09695
  • [3] Mixed local and nonlocal elliptic operators: regularity and maximum principles
    Biagi, Stefano
    Dipierro, Serena
    Valdinoci, Enrico
    Vecchi, Eugenio
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (03) : 585 - 629
  • [4] Local and nonlocal anisotropic transport in reversed shear magnetic fields: Shearless Cantori and nondiffusive transport
    Blazevski, Daniel
    del-Castillo-Negrete, Diego
    [J]. PHYSICAL REVIEW E, 2013, 87 (06):
  • [5] On the Holder regularity of signed solutions to a doubly nonlinear equation
    Boegelein, Verena
    Duzaar, Frank
    Liao, Naian
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (09)
  • [6] Continuity of solutions to a nonlinear fractional diffusion equation
    Brasco, Lorenzo
    Lindgren, Erik
    Stromqvist, Martin
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (04) : 4319 - 4381
  • [7] REGULARITY THEORY FOR PARABOLIC NONLINEAR INTEGRAL OPERATORS
    Caffarelli, Luis
    Chan, Chi Hin
    Vasseur, Alexis
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) : 849 - 869
  • [8] CHEN YZ, 1988, ARCH RATION MECH AN, V103, P319
  • [9] CHEN YZ, 1989, J REINE ANGEW MATH, V395, P102
  • [10] BOUNDARY HARNACK PRINCIPLE FOR Δ + Δα/2
    Chen, Zhen-Qing
    Kim, Panki
    Song, Renming
    Vondracek, Zoran
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (08) : 4169 - 4205