Bayesian latent variable models for median regression on multiple outcomes

被引:0
|
作者
Dunson, DB
Watson, M
Taylor, JA
机构
[1] NIEHS, Biostat Branch, Res Triangle Pk, NC 27709 USA
[2] NIEHS, Epidemiol Branch, Res Triangle Pk, NC 27709 USA
关键词
comet assay; factor analysis; measurement error; multivariate response; repeated measures; semiparametric; single-cell electrophoresis; substitution likelihood;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Often a response of interest cannot be measured directly and it is necessary to rely on multiple surrogates, which can be assumed to be conditionally independent given the latent response and observed covariates. Latent response models typically assume that residual densities are Gaussian. This article proposes a Bayesian median regression modeling approach, which avoids parametric assumptions about residual densities by relying on an approximation based on quantiles. To accommodate within-subject dependency, the quantile response categories of the surrogate outcomes are related to underlying normal variables, which depend on a latent normal response. This underlying Gaussian covariance structure simplifies interpretation and model fitting, without restricting the marginal densities of the surrogate outcomes. A Markov chain Monte Carlo algorithm is proposed for posterior computation, and the methods are applied to single-cell electrophoresis (comet assay) data from a genetic toxicology study.
引用
收藏
页码:296 / 304
页数:9
相关论文
共 50 条
  • [1] Latent variable models for longitudinal data with multiple continuous outcomes
    Roy, J
    Lin, XH
    BIOMETRICS, 2000, 56 (04) : 1047 - 1054
  • [2] SEMIPARAMETRIC LATENT VARIABLE TRANSFORMATION MODELS FOR MULTIPLE MIXED OUTCOMES
    Lin, Huazhen
    Zhou, Ling
    Elashoff, Robert M.
    Li, Yi
    STATISTICA SINICA, 2014, 24 (02) : 833 - 854
  • [3] Latent Factor Regression Models for Grouped Outcomes
    Woodard, D. B.
    Love, T. M. T.
    Thurston, S. W.
    Ruppert, D.
    Sathyanarayana, S.
    Swan, S. H.
    BIOMETRICS, 2013, 69 (03) : 785 - 794
  • [4] Bayesian latent variable models for hierarchical clustered count outcomes with repeated measures in microbiome studies
    Xu, Lizhen
    Paterson, Andrew D.
    Xu, Wei
    GENETIC EPIDEMIOLOGY, 2017, 41 (03) : 221 - 232
  • [5] GEE-Assisted Forward Regression for Spatial Latent Variable Models
    Hui, Francis K. C.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (04) : 1013 - 1024
  • [6] Comparison of multiple regression to two latent variable techniques for estimation and prediction
    Wall, MM
    Li, RF
    STATISTICS IN MEDICINE, 2003, 22 (23) : 3671 - 3685
  • [7] Effects of covariance misspecification in a latent variable model for multiple outcomes
    Sammel, MD
    Ryan, LM
    STATISTICA SINICA, 2002, 12 (04) : 1207 - 1222
  • [8] Latent variable multivariate regression modeling
    Burnham, AJ
    MacGregor, JF
    Viveros, R
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1999, 48 (02) : 167 - 180
  • [9] Latent Variable Modeling for Integrating Output from Multiple Climate Models
    Christensen, William F.
    Sain, Stephan R.
    MATHEMATICAL GEOSCIENCES, 2012, 44 (04) : 395 - 410
  • [10] Latent Variable Modeling for Integrating Output from Multiple Climate Models
    William F. Christensen
    Stephan R. Sain
    Mathematical Geosciences, 2012, 44 : 395 - 410