A NEW LINEAR POISSON-BOLTZMANN EQUATION AND FINITE ELEMENT SOLVER BY SOLUTION DECOMPOSITION APPROACH

被引:7
作者
Li, Jiao [1 ]
Xie, Dexuan [2 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Comp Sci, Changsha 410004, Hunan, Peoples R China
[2] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
基金
美国国家科学基金会;
关键词
Poisson-Boltzmann equation; implicit solvent; biomolecular electrostatics; finite element method; ELECTROSTATICS;
D O I
10.4310/CMS.2015.v13.n2.a2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The linear Poisson-Boltzmann equation (LPBE) is one well-known implicit solvent continuum model for computing the electrostatic potential of biomolecules in ionic solvent. To overcome its singular difficulty caused by Dirac delta distributions of point charges and to further improve its solution accuracy, we develop in this paper a new scheme for solving the current LPBE model, a new LPBE model, and a new LPBE finite element program package based on our previously proposed PBE solution decomposition. Numerical tests on biomolecules and a nonlinear Born ball model with an analytical solution validate the new LPBE solution decomposition schemes, demonstrate the effectiveness and efficiency of the new program package, and confirm that the new LPBE model can significantly improve the solution accuracy of the current LPBE model.
引用
收藏
页码:315 / 325
页数:11
相关论文
共 14 条
[1]  
Alnas M.S., 2012, Automated Solution of Differential Equations by the Finite Element Method, P273, DOI [DOI 10.1007/978-3-642-23099-8_5, 10.1007/978-3-642-23099-8]
[2]   The finite element approximation of the nonlinear Poisson-Boltzmann equation [J].
Chen, Long ;
Holst, Michael J. ;
Xu, Jinchao .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (06) :2298-2320
[3]  
Chern I.-L., 2003, METHODS APPL ANAL, V10, P309, DOI [DOI 10.4310/MAA.2003.V10.N2.A9, 10.4310/maa.2003.v10.n2.a9]
[4]   Biomolecular electrostatics with the linearized Poisson-Boltzmann equation [J].
Fogolari, F ;
Zuccato, P ;
Esposito, G ;
Viglino, P .
BIOPHYSICAL JOURNAL, 1999, 76 (01) :1-16
[5]   A treecode-accelerated boundary integral Poisson-Boltzmann solver for electrostatics of solvated biomolecules [J].
Geng, Weihua ;
Krasny, Robert .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 247 :62-78
[6]   Adaptive Finite Element Modeling Techniques for the Poisson-Boltzmann Equation [J].
Holst, M. ;
McCammon, J. A. ;
Yu, Z. ;
Zhou, Y. C. ;
Zhu, Y. .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2012, 11 (01) :179-214
[7]  
Holst M, 1994, POISSON BOLTZMANN EQ
[8]   CLASSICAL ELECTROSTATICS IN BIOLOGY AND CHEMISTRY [J].
HONIG, B ;
NICHOLLS, A .
SCIENCE, 1995, 268 (5214) :1144-1149
[9]   New-version-fast-multipole-method accelerated electrostatic calculations in biomolecular systems [J].
Lu, Benzhuo ;
Cheng, Xiaolin ;
McCammon, J. Andrew .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (02) :1348-1366
[10]   A new analysis of electrostatic free energy minimization and Poisson-Boltzmann equation for protein in ionic solvent [J].
Xie, Dexuan ;
Li, Jiao .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 21 :185-196