A NEW LINEAR POISSON-BOLTZMANN EQUATION AND FINITE ELEMENT SOLVER BY SOLUTION DECOMPOSITION APPROACH

被引:7
|
作者
Li, Jiao [1 ]
Xie, Dexuan [2 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Comp Sci, Changsha 410004, Hunan, Peoples R China
[2] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
基金
美国国家科学基金会;
关键词
Poisson-Boltzmann equation; implicit solvent; biomolecular electrostatics; finite element method; ELECTROSTATICS;
D O I
10.4310/CMS.2015.v13.n2.a2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The linear Poisson-Boltzmann equation (LPBE) is one well-known implicit solvent continuum model for computing the electrostatic potential of biomolecules in ionic solvent. To overcome its singular difficulty caused by Dirac delta distributions of point charges and to further improve its solution accuracy, we develop in this paper a new scheme for solving the current LPBE model, a new LPBE model, and a new LPBE finite element program package based on our previously proposed PBE solution decomposition. Numerical tests on biomolecules and a nonlinear Born ball model with an analytical solution validate the new LPBE solution decomposition schemes, demonstrate the effectiveness and efficiency of the new program package, and confirm that the new LPBE model can significantly improve the solution accuracy of the current LPBE model.
引用
收藏
页码:315 / 325
页数:11
相关论文
共 50 条