Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices

被引:236
|
作者
Nan, Kewang [1 ]
Kang, Stephen Dongmin [2 ,3 ,7 ]
Li, Kan [3 ]
Yu, Ki Jun [4 ]
Zhu, Feng [3 ,5 ]
Wang, Juntong [1 ,8 ]
Dunn, Alison C. [1 ]
Zhou, Chaoqun [1 ,9 ]
Xie, Zhaoqian [3 ]
Agne, Matthias T. [3 ]
Wang, Heling [3 ]
Luan, Haiwen [3 ]
Zhang, Yihui [6 ]
Huang, Yonggang [3 ]
Snyder, G. Jeffrey [3 ]
Rogers, John A. [1 ,3 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] CALTECH, Pasadena, CA 91125 USA
[3] Northwestern Univ, Evanston, IL 60208 USA
[4] Yonsei Univ, Seoul 03722, South Korea
[5] Wuhan Univ Technol, Wuhan 430070, Hubei, Peoples R China
[6] Tsinghua Univ, Beijing 100084, Peoples R China
[7] Stanford Univ, Palo Alto, CA 94305 USA
[8] Univ Michigan, Ann Arbor, MI 48109 USA
[9] Columbia Univ, New York, NY 10027 USA
来源
SCIENCE ADVANCES | 2018年 / 4卷 / 11期
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
PERFORMANCE; GENERATOR; MESOSTRUCTURES; OPTIMIZATION; FOIL;
D O I
10.1126/sciadv.aau5849
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With accelerating trends in miniaturization of semiconductor devices, techniques for energy harvesting become increasingly important, especially in wearable technologies and sensors for the internet of things. Although thermoelectric systems have many attractive attributes in this context, maintaining large temperature differences across the device terminals and achieving low-thermal impedance interfaces to the surrounding environment become increasingly difficult to achieve as the characteristic dimensions decrease. Here, we propose and demonstrate an architectural solution to this problem, where thin-film active materials integrate into compliant, open three-dimensional (3D) forms. This approach not only enables efficient thermal impedance matching but also multiplies the heat flow through the harvester, thereby increasing the efficiencies for power conversion. Interconnected arrays of 3D thermoelectric coils built using microscale ribbons of monocrystalline silicon as the active material demonstrate these concepts. Quantitative measurements and simulations establish the basic operating principles and the key design features. The results suggest a scalable strategy for deploying hard thermoelectric thin-film materials in harvesters that can integrate effectively with soft materials systems, including those of the human body.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Flexible fiber energy harvesting/storage devices
    Zou, Dechun
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [22] Development of Thermoelectric Fibers for Miniature Thermoelectric Devices
    Ren, Fei
    Menchhofer, Paul
    Kiggans, James
    Wang, Hsin
    JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (03) : 1412 - 1418
  • [23] Flexible and stretchable thermoelectric devices with Ni-EGaIn liquid metal electrodes for cooling and low-grade-body heat harvesting
    Xu, YunHe
    Wu, Bo
    Guo, Yang
    Hou, Chengyi
    Li, Yaogang
    Wang, Hongzhi
    Zhang, Qinghong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 945
  • [24] Development of Thermoelectric Fibers for Miniature Thermoelectric Devices
    Fei Ren
    Paul Menchhofer
    James Kiggans
    Hsin Wang
    Journal of Electronic Materials, 2016, 45 : 1412 - 1418
  • [25] Self-healing flexible/stretchable energy storage devices
    Tong, Xiaoling
    Tian, Zhengnan
    Sun, Jingyu
    Tung, Vincent
    Kaner, Richard B.
    Shao, Yuanlong
    MATERIALS TODAY, 2021, 44 : 78 - 104
  • [26] Stretchable and flexible thermoelectric polymer composites
    Slobodian, P.
    Riha, P.
    Matyas, J.
    Olejnik, R.
    APPLIED NANOTECHNOLOGY AND NANOSCIENCE INTERNATIONAL CONFERENCE 2017 (ANNIC 2017), 2018, 987
  • [27] Stretchable Energy Harvesting Devices: Attempts To Produce High Performance Electrodes
    Tugui, Codrin
    Ursu, Cristian
    Sacarescu, Liviu
    Asandulesa, Mihai
    Stoian, George
    Ababei, Gabriel
    Cazacu, Maria
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (09): : 7851 - 7858
  • [28] Flexible thermoelectric materials and device optimization for wearable energy harvesting
    Bahk, Je-Hyeong
    Fang, Haiyu
    Yazawa, Kazuaki
    Shakouri, Ali
    JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (40) : 10362 - 10374
  • [29] Flexible thermoelectric energy harvesting system based on polymer composites
    Rodrigues-Marinho, T.
    Correia, V.
    Tubio, C. -R.
    Ares-Pernas, A.
    Abad, M. -J.
    Lanceros-Mendez, S.
    Costa, P.
    CHEMICAL ENGINEERING JOURNAL, 2023, 473
  • [30] Flexible thermoelectric generator for human body heat energy harvesting
    Jo, S. E.
    Kim, M. K.
    Kim, M. S.
    Kim, Y. J.
    ELECTRONICS LETTERS, 2012, 48 (16) : 1015 - 1016