Dense families of selections and finite-dimensional spaces

被引:10
|
作者
Gutev, V
Valov, V
机构
[1] Univ Natal, Fac Sci, Sch Math & Stat Sci, ZA-4041 Durban, South Africa
[2] Nipissing Univ, Dept Math & Comp Sci, N Bay, ON P1B 8L7, Canada
来源
SET-VALUED ANALYSIS | 2003年 / 11卷 / 04期
关键词
continuous selection; finite-dimensional space; strongly countable-dimensional space; Zn-set;
D O I
10.1023/A:1025679902969
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A characterization of n-dimensional spaces via continuous selections avoiding Z(n)-sets is given, and a selection theorem for strongly countable-dimensional spaces is established. We apply these results to prove a generalized Ostrand's theorem, and to obtain a new alternative proof of the Hurewicz formula. It is also shown that our selection theorem yields an easy proof of a Michael's result.
引用
收藏
页码:373 / 391
页数:19
相关论文
共 41 条