Durability gap analysis for fiber-reinforced polymer composites in civil infrastructure

被引:335
|
作者
Karbhari, VM [1 ]
Chin, JW
Hunston, D
Benmokrane, B
Juska, T
Morgan, R
Lesko, JJ
Sorathia, U
Reynaud, D
机构
[1] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA
[2] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
[3] Univ Sherbrooke, Dept Civil Engn, Sherbrooke, PQ J1K 2R1, Canada
[4] Newport News Shipyard, Newport News, VA 23603 USA
[5] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
[6] Virginia Tech, Dept Engn Sci & Mech, Blacksburg, VA 24061 USA
[7] USN, Ctr Surface Warfare, Carderock Div, Bethesda, MD 20817 USA
[8] Civil Engn Res Fdn, Washington, DC 20037 USA
关键词
durability; fiber reinforced polymers; reinforcement retrofitting; decks; panels; composite materials;
D O I
10.1061/(ASCE)1090-0268(2003)7:3(238)
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The lack of a comprehensive, validated, and easily accessible data base for the durability of fiber-reinforced polymer (FRP) composites as related to civil infrastructure applications has been identified as a critical barrier to widespread acceptance of these materials by structural designers and civil engineers. This concern is emphasized since the structures of interest are primarily load bearing and are expected to remain in service over extended periods of time without significant inspection or maintenance. This paper presents a synopsis of a gap analysis study undertaken under the aegis of the Civil Engineering Research Foundation and the Federal Highway Administration to identify and prioritize critical gaps in durability data. The study focuses on the use of FRP in internal reinforcement, external strengthening, seismic retrofit, bridge decks, structural profiles, and panels. Environments of interest are moisture/solution, alkalinity, creep/relaxation, fatigue, fire, thermal effects (including freeze-thaw), and ultraviolet exposure.
引用
收藏
页码:238 / 247
页数:10
相关论文
共 50 条
  • [21] Process monitoring of fiber-reinforced polymer composites
    Degamber, B
    Fernando, GF
    MRS BULLETIN, 2002, 27 (05) : 370 - 380
  • [22] A Review on Drilling of Fiber-Reinforced Polymer Composites
    Kumar, A. Mohan
    Parameshwaran, R.
    Rajasekar, R.
    Moganapriya, C.
    Manivannan, R.
    MECHANICS OF COMPOSITE MATERIALS, 2022, 58 (01) : 97 - 112
  • [23] A Constitutive Model for Fiber-reinforced Polymer Composites
    Cho, J.
    Fenner, J.
    Werner, B.
    Daniel, I. M.
    JOURNAL OF COMPOSITE MATERIALS, 2010, 44 (26) : 3133 - 3150
  • [24] Lignocellulosic Fiber-Reinforced Keratin Polymer Composites
    Barone, Justin R.
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2009, 17 (02) : 143 - 151
  • [25] Lignocellulosic Fiber-Reinforced Keratin Polymer Composites
    Justin R. Barone
    Journal of Polymers and the Environment, 2009, 17 : 143 - 151
  • [26] Process Monitoring of Fiber-Reinforced Polymer Composites
    B. Degamber
    G. F. Fernando
    MRS Bulletin, 2002, 27 : 370 - 380
  • [27] Upcycling of carbon fiber-reinforced polymer composites
    Zhang, Liangdong
    Liu, Wenlu
    Jiang, Haibin
    Zhang, Xiaohong
    Shang, Yimei
    Jiang, Chao
    Wang, Xiang
    Qi, Guicun
    Li, Binghai
    Xu, Peng
    Qiao, Jinliang
    COMPOSITES SCIENCE AND TECHNOLOGY, 2023, 231
  • [28] Banana and plantain fiber-reinforced polymer composites
    Adeniyi, Adewale George
    Ighalo, Joshua O.
    Onifade, Damilola Victoria
    JOURNAL OF POLYMER ENGINEERING, 2019, 39 (07) : 597 - 611
  • [29] Interphase Effect on Fiber-Reinforced Polymer Composites
    Kumar, Pramod
    Chandra, Rakesh
    Singh, S. P.
    COMPOSITE INTERFACES, 2010, 17 (01) : 15 - 35
  • [30] Geopolymers and Fiber-Reinforced Concrete Composites in Civil Engineering
    Mahmood, Aamir
    Noman, Muhammad Tayyab
    Pechociakova, Miroslava
    Amor, Nesrine
    Petru, Michal
    Abdelkader, Mohamed
    Militky, Jiri
    Sozcu, Sebnem
    Ul Hassan, Syed Zameer
    POLYMERS, 2021, 13 (13)