Unsupervised Learning Algorithm for Signal Separation

被引:0
作者
Jacob, Theju [1 ]
Snyder, Wesley [1 ]
机构
[1] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
来源
2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE FOR MULTIMEDIA, SIGNAL AND VISION PROCESSING (CIMSIVP) | 2014年
关键词
SELF-ORGANIZATION; VISUAL-CORTEX; RECOGNITION; ORIENTATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a neural network capable of separating inputs in an unsupervised manner. Oja's rule and Self-Organizing map principles are used to construct the network. The network is tested using 1) straight lines 2) MNIST database. The results demonstrate that the network can operate as a general clustering algorithm, with neighboring neurons responding to geometrically similar inputs.
引用
收藏
页码:158 / 163
页数:6
相关论文
共 24 条
[1]  
[Anonymous], 2011, Neural Networks and Learning Machines
[2]  
[Anonymous], 2002, ORG BEHAV NEUROPSYCH
[3]   MODELS OF ORIENTATION AND OCULAR DOMINANCE COLUMNS IN THE VISUAL-CORTEX - A CRITICAL COMPARISON [J].
ERWIN, E ;
OBERMAYER, K ;
SCHULTEN, K .
NEURAL COMPUTATION, 1995, 7 (03) :425-468
[4]   FORMING SPARSE REPRESENTATIONS BY LOCAL ANTI-HEBBIAN LEARNING [J].
FOLDIAK, P .
BIOLOGICAL CYBERNETICS, 1990, 64 (02) :165-170
[5]  
Foldiak P., 1991, THESIS
[6]  
FOLDIAK P, 1989, P IEEE INNS INT JOIN, V1, P401
[7]   Learning Invariance from Transformation Sequences [J].
Foldiak, Peter .
NEURAL COMPUTATION, 1991, 3 (02) :194-200
[8]  
Hubel DavidH., 2009, Eye, Brain and Vision
[9]  
Hubel DH., 2005, BRAIN VISUAL PERCEPT
[10]  
Jacob T., NEURAL MODEL S UNPUB