Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data

被引:134
作者
Cadek, Ondrej [1 ]
Tobie, Gabriel [2 ]
Van Hoolst, Tim [3 ,4 ]
Masse, Marion [2 ]
Choblet, Gael [2 ]
Lefevre, Axel [2 ]
Mitri, Giuseppe [2 ]
Baland, Rose-Marie [3 ]
Behounkova, Marie [1 ]
Bourgeois, Olivier [2 ]
Trinh, Anthony [3 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Geophys, Prague 8, Czech Republic
[2] Univ Nantes, Lab Planetol & Geodynam, UMR CNRS, Nantes, France
[3] Royal Observ Belgium, Brussels, Belgium
[4] Katholieke Univ Leuven, Inst Sterrenkunde, Leuven, Belgium
基金
欧洲研究理事会;
关键词
Enceladus; internal structure; SOUTH-POLE; TIDAL DISSIPATION; WATER RESERVOIR; HEAT-FLUX; ORIGIN; PLUME; TOPOGRAPHY; SATELLITES; FRICTION;
D O I
10.1002/2016GL068634
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The intense plume activity at the South Pole of Enceladus together with the recent detection of libration hints at an internal water ocean underneath the outer ice shell. However, the interpretation of gravity, shape, and libration data leads to contradicting results regarding the depth of ocean/ice interface and the total volume of the ocean. Here we develop an interior structure model consisting of a rocky core, an internal ocean, and an ice shell, which satisfies simultaneously the gravity, shape, and libration data. We show that the data can be reconciled by considering isostatic compensation including the effect of a few hundred meter thick elastic lithosphere. Our model predicts that the core radius is 180-185km, the ocean density is at least 1030kg/m(3), and the ice shell is 18-22km thick on average. The ice thicknesses are reduced at poles decreasing to less than 5km in the south polar region.
引用
收藏
页码:5653 / 5660
页数:8
相关论文
共 36 条
  • [1] adek O., 2015, 2015 FALL M AGU
  • [2] Behounková M, 2015, NAT GEOSCI, V8, P601, DOI [10.1038/NGEO2475, 10.1038/ngeo2475]
  • [3] Tidally-induced melting events as the origin of south-pole activity on Enceladus
    Behounkova, Marie
    Tobie, Gabriel
    Choblet, Gael
    Cadek, Ondrej
    [J]. ICARUS, 2012, 219 (02) : 655 - 664
  • [4] Convection-driven compaction as a possible origin of Enceladus's long wavelength topography
    Besserer, J.
    Nimmo, F.
    Roberts, J. H.
    Pappalardo, R. T.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2013, 118 (05) : 908 - 915
  • [5] Constraining the heat flux between Enceladus' tiger stripes: Numerical modeling of funiscular plains formation
    Bland, Michael T.
    McKinnon, William B.
    Schenk, Paul M.
    [J]. ICARUS, 2015, 260 : 232 - 245
  • [6] Enceladus' south polar sea
    Collins, Geoffrey C.
    Goodman, Jason C.
    [J]. ICARUS, 2007, 189 (01) : 72 - 82
  • [7] Structural mapping of Enceladus and implications for formation of tectonized regions
    Crow-Willard, Emma N.
    Pappalardo, Robert T.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2015, 120 (05) : 928 - 950
  • [8] Enceladus' water vapor plume
    Hansen, CJ
    Esposito, L
    Stewart, AIF
    Colwell, J
    Hendrix, A
    Pryor, W
    Shemansky, D
    West, R
    [J]. SCIENCE, 2006, 311 (5766) : 1422 - 1425
  • [9] Ongoing hydrothermal activities within Enceladus
    Hsu, Hsiang-Wen
    Postberg, Frank
    Sekine, Yasuhito
    Shibuya, Takazo
    Kempf, Sascha
    Horanyi, Mihaly
    Juhasz, Antal
    Altobelli, Nicolas
    Suzuki, Katsuhiko
    Masaki, Yuka
    Kuwatani, Tatsu
    Tachibana, Shogo
    Sirono, Sin-iti
    Moragas-Klostermeyer, Georg
    Srama, Ralf
    [J]. NATURE, 2015, 519 (7542) : 207 - +
  • [10] The Gravity Field and Interior Structure of Enceladus
    Iess, L.
    Stevenson, D. J.
    Parisi, M.
    Hemingway, D.
    Jacobson, R. A.
    Lunine, J. I.
    Nimmo, F.
    Armstrong, J. W.
    Asmar, S. W.
    Ducci, M.
    Tortora, P.
    [J]. SCIENCE, 2014, 344 (6179) : 78 - 80