Fabrication and characterization of the anode-supported solid oxide fuel cell with Ni current collector layer

被引:2
|
作者
Kao, Wei-Xin [1 ]
Lin, Tai-Nan [1 ]
Lee, Maw-Chwain [1 ]
机构
[1] Inst Nucl Energy Res, Div Chem Engn, Taoyuan 32546, Taiwan
关键词
Solid oxide fuel cell; AC-impedance; Ni current collector layer; Contact pressure; ELECTROLYTE; PERFORMANCE;
D O I
10.2109/jcersj2.123.217
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The anode-supported solid oxide fuel cell (SOFC) is constructed by a screen-printed double-layer cathode, an air-tight yttria-stabilized zirconia (YSZ) as electrolyte, and a porous Ni-YSZ as anode substrate. A thin Ni film is fabricated as an anode current collector layer to improve the performance of the SOFC. The operation parameters are systematically investigated, such as feed rates of the reactants, operation temperature, contact pressure between current collectors and unit cell on the cell performance. The SEM results show that the YSZ thin film is fully dense with a thickness of 8 mu m and exhibits the good compatibility between cathode and electrolyte layers. The maximum power density of the cell with Ni current collector layer is 366 mW cm(-2) at 800 degrees C. This value is approximately 1.3 times higher than that of the cell without Ni layer. According to the electrochemical results, the Ni current collector layer decreases the ohmic and polarization resistances. The contact pressure results between cell and test housing show that cell performance efficiency is enhanced at the high current density region. (C) 2015 The Ceramic Society of Japan. All rights reserved.
引用
收藏
页码:217 / 221
页数:5
相关论文
共 50 条
  • [41] The effect of HCl in syngas on Ni-YSZ anode-supported solid oxide fuel cells
    Xu, Chunchuan
    Gong, Mingyang
    Zondlo, John W.
    Liu, XingBo
    Finklea, Harry O.
    JOURNAL OF POWER SOURCES, 2010, 195 (08) : 2149 - 2158
  • [42] Enhancement of fuel transfer in anode-supported honeycomb solid oxide fuel cells
    Ikeda, Sou
    Nakajima, Hironori
    Kitahara, Tatsumi
    7TH EUROPEAN THERMAL-SCIENCES CONFERENCE (EUROTHERM2016), 2016, 745
  • [43] Modeling, parametric analysis and optimization of an anode-supported planar solid oxide fuel cell
    Borji, Mehdi
    Atashkari, Kazem
    Nariman-zadeh, Nader
    Masoumpour, Mehdi
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2015, 229 (17) : 3125 - 3140
  • [44] Co-fired anode-supported solid oxide fuel cell for internal reforming of hydrocarbon fuel
    Kumar, S. Senthil
    Jayaram, Vikram
    Aruna, S. T.
    ENERGY ECOLOGY AND ENVIRONMENT, 2021, 6 (01) : 55 - 68
  • [45] A comprehensive CFD model of anode-supported solid oxide fuel cells
    Jeon, Dong Hyup
    ELECTROCHIMICA ACTA, 2009, 54 (10) : 2727 - 2736
  • [46] Development and tests of anode-supported solid oxide fuel cells with electrolyte layer deposited by spin-coating
    Tabuti, F. N.
    Fonseca, F. C.
    Florio, D. Z.
    MATERIA-RIO DE JANEIRO, 2013, 18 (01): : 39 - 45
  • [47] Modeling cooperative creep reoxidation effect on the mechanical stability of anode-supported solid oxide fuel cell
    Shang, Shuaipeng
    Lu, Yongjun
    Zhang, Aimeng
    Cao, Xinlei
    Wang, Fenghui
    Zhao, Xiang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2018, 42 (15) : 4909 - 4916
  • [48] Redox Stability Optimization in Anode-Supported Solid Oxide Fuel Cells
    Wang, Yu
    Song, Ming
    MATERIALS, 2024, 17 (13)
  • [49] Dip coating technique in fabrication of cone-shaped anode-supported solid oxide fuel cells
    Bai, Yaohui
    Liu, Jiang
    Gao, Hongbo
    Jin, Chao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 480 (02) : 554 - 557
  • [50] Experimental optimization of the fabrication parameters for anode-supported micro-tubular solid oxide fuel cells
    Timurkutluk, Cigdem
    Timurkutluk, Bora
    Kaplan, Yuksel
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (43) : 23294 - 23309