Evaluation of Spatio-Temporal Variogram Models for Mapping Xco2 Using Satellite Observations: A Case Study in China

被引:27
作者
Guo, Lijie [1 ,2 ]
Lei, Liping [1 ]
Zeng, Zhao-Cheng [1 ]
Zou, Pengfei [1 ,2 ]
Liu, Da [1 ,2 ]
Zhang, Bing [1 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
ACOS-GOSAT; carbon dioxide; mapping; spatio-temporal kriging; spatio-temporal variogram models; CO2 RETRIEVAL ALGORITHM; SPACE-TIME MODELS; GEOSTATISTICAL ANALYSIS; GOSAT; VALIDATION; PRODUCT; XCO2; FTS;
D O I
10.1109/JSTARS.2014.2363019
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Greenhouse Gases Observing Satellite (GOSAT), which measures column-averaged carbon dioxide dry air mole fractions (Xco(2)) from space, provides new data sources to improve our understanding of carbon cycle. The available GOSAT data, however, have many gaps and are irregularly positioned, which make it difficult to directly interpret their scientific significance without further data analysis. Spatio-temporal geostatistical prediction approach can be used to fill the gaps for global and regional Xco(2) mapping. It is important to choose a suitable spatio-temporal variogram model since modeling spatio-temporal correlation structure using variogram model is a critical step in the geostatistical prediction. In this study, three different flexible spatio-temporal variogram models, including the product-sum model, Cressie-Huang model, and Gneiting model, are used to model the spatio-temporal correlation structure of Xco(2) over China, using the Atmospheric CO2 Observations from Space retrievals of the GOSAT (ACOS-GOSAT) Xco(2) (v3.3) data products. The three models are compared and evaluated using the weighted mean square errors (WMSE) indicating the fitness between the empirical variogram surface and the theoretical variogram model, cross-validation for quantifying prediction accuracies, and the performance of the three models when used to fill the spatial gaps and generate Xco(2) maps in 3-day temporal interval. The results indicate that 1) the model fitness of the commonly used product-sum model is slightly better than Cressie-Huang model and Gneiting model as indicated from WMSE, and 2) all the three models present similar summary statistics in cross-validation, all with a significantly high correlation coefficient of 0.92, and about 83% of prediction error within 2 ppm and about 53% within 1 ppm, and (3) differences between the mapping results using the three models are generally less than 0.1 ppm, and no significant differences can be identified. As a conclusion from the above results, all the three variogram models can precisely catch the empirical characteristics of the spatio-temporal correlation structure of Xco2 over China, and the precision and effectiveness of predicting and mapping Xco(2) using the three models are almost the same.
引用
收藏
页码:376 / 385
页数:10
相关论文
共 46 条
[1]   Using CO2 spatial variability to quantify representation errors of satellite CO2 retrievals [J].
Alkhaled, A. A. ;
Michalak, A. M. ;
Kawa, S. R. .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (16)
[2]   A survey of cross-validation procedures for model selection [J].
Arlot, Sylvain ;
Celisse, Alain .
STATISTICS SURVEYS, 2010, 4 :40-79
[3]   Global CO2 fluxes estimated from GOSAT retrievals of total column CO2 [J].
Basu, S. ;
Guerlet, S. ;
Butz, A. ;
Houweling, S. ;
Hasekamp, O. ;
Aben, I. ;
Krummel, P. ;
Steele, P. ;
Langenfelds, R. ;
Torn, M. ;
Biraud, S. ;
Stephens, B. ;
Andrews, A. ;
Worthy, D. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (17) :8695-8717
[4]  
Chiles J.-P., 2008, GEOSTATISTICS MODELI, P150
[5]   Classes of nonseparable, spatio-temporal stationary covariance functions [J].
Cressie, N ;
Huang, HC .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (448) :1330-1340
[6]   FITTING VARIOGRAM MODELS BY WEIGHTED LEAST-SQUARES [J].
CRESSIE, N .
JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR MATHEMATICAL GEOLOGY, 1985, 17 (05) :563-586
[7]  
Cressie N., 2015, STAT SPATIO TEMPORAL
[8]  
Cressie N.A.C., 2011, WILEY SERIES PROBABI
[9]   The ACOS CO2 retrieval algorithm - Part II: Global XCO2 data characterization [J].
Crisp, D. ;
Fisher, B. M. ;
O'Dell, C. ;
Frankenberg, C. ;
Basilio, R. ;
Boesch, H. ;
Brown, L. R. ;
Castano, R. ;
Connor, B. ;
Deutscher, N. M. ;
Eldering, A. ;
Griffith, D. ;
Gunson, M. ;
Kuze, A. ;
Mandrake, L. ;
McDuffie, J. ;
Messerschmidt, J. ;
Miller, C. E. ;
Morino, I. ;
Natraj, V. ;
Notholt, J. ;
O'Brien, D. M. ;
Oyafuso, F. ;
Polonsky, I. ;
Robinson, J. ;
Salawitch, R. ;
Sherlock, V. ;
Smyth, M. ;
Suto, H. ;
Taylor, T. E. ;
Thompson, D. R. ;
Wennberg, P. O. ;
Wunch, D. ;
Yung, Y. L. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2012, 5 (04) :687-707
[10]   Characteristics of some classes of space-time covariance functions [J].
De Iaco, S. ;
Posa, D. ;
Myers, D. E. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (11) :2002-2015